

COMPORTEMENT HYDROGEOCHIMIQUE D'UN AQUIFERE COTIER DES ZONES SEMI-ARIDES : CAS DE L'AQUIFERE BARREMIEN-APTIEN DU BASSIN D'ESSAOUIRA (MAROC OCCIDENTAL)

HYDROGEOCHEMICAL BEHAVIOR OF A COASTAL AQUIFER FROM SEMI-ARID AREAS: CASE OF BARREMIAN-APTIAN AQUIFER OF ESSAOUIRA BASIN (WESTERN MOROCCO)

OUHAMDOUCH S.¹, BAHIR M.², CHKIR N.³, CARREIRA P.⁴, GOUMIH A.²

¹ 3GEOLAB, faculté des sciences Semlalia, Université Cadi Ayyad, Marrakech, Maroc
² Département de géologie, Ecole Normale Supérieure de Marrakech,
Université Cadi Ayyad, Marrakech, Maroc.
³ Ecole Nationale d'Ingénieurs de Sfax, Radio-Analyses et Environnement,
BP: W. 3038, Sfax, Tunisie.

⁴ Centro de Ciências e Tecnologias Nucleares, IST/CTN, Universidade de Lisboa, Portugal.

salah.ouhamdouch@edu.uca.ma

RESUME

Cette étude entre dans le cadre de l'identification des facteurs influençant la minéralisation des eaux de l'aquifère Barrémien-Aptien du bassin d'Essaouira (Sud-Ouest Marocain). Pour effectuer cette investigation, 26 échantillons d'eau ont été récoltés et analysés en juin 2015. Les résultats des analyses chimiques ont été traités par les méthodes hydrochimiques et statistiques (Analyse en Composante Principale (ACP) et la Classification Ascendante Hiérarchique (CAH)). Un système d'information géographique (SIG) a été établi dans le but d'étudier la répartition spatiale de la salinité et de tracer la carte piézométrique de l'aquifère étudié. L'approche hydrochimique a montré que les eaux sont moyennement minéralisées et présentent trois types de faciès chimique : (1) Ca-Mg-Cl (54%), (2) Ca-Mg-HCO₃ (31%) et (3) Na-K-Cl (11%). Cette technique a mis en évidence que la minéralisation des eaux de l'aquifère Barrémien-Aptien du bassin d'Essaouira est le résultat de trois phénomènes : (i) la dissolution de la

^{© 2016} Ouhamdouch S. & al. Ceci est un article Libre Accès distribué sous les termes de la licence Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0), qui permet l'utilisation sans restriction, la distribution et la reproduction sur tout support, à condition que le travail original soit correctement cité.

roche par le contact eau-roche, (ii) processus d'échange d'ions (surtout inverse) et (iii) les apports d'eaux par l'infiltration superficielle. Ces trois phénomènes sont confirmés par la technique statistique ACP. La CAH a montré l'existence de trois groupes d'eaux de compositions chimiques différentes.

Mots-clés: Aquifère, ACP, Bassin d'Essaouira, CAH, hydrochimie, minéralisation, ressource en eaux, zone semi-aride.

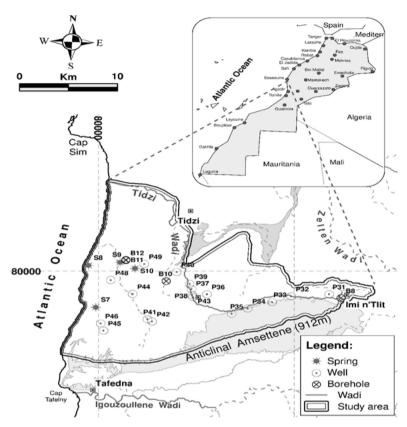
ABSTRACT

This study enters in the identification of factors influencing the waters mineralization of the Barremian-Aptian aquifer of the Essaouira Basin (southwest Morocco). To perform this investigation, 26 water samples were collected and analyzed in June 2015. The results of chemical analysis were treated with hydrochemical and statistical methods (Principal Component Analysis (PCA) and Agglomerative hierarchical clustering (AHC)). A geographic information system (GIS) was established to study the spatial variation of salinity and trace the piezometric map of the studied aquifer. The hydrochemical approach showed that the water is slightly mineralized and have three types of chemical facies: (1) Ca-Mg-Cl (54%), (2) Ca-Mg-HCO₃ (31%) and (3) Na -K-Cl (11%). This technique has demonstrated that mineralization of the waters of the Barremian-Aptian aquifer of Essaouira Basin is the result of two phenomena: (i) the dissolution of the rock by water-rock contact, (ii) ion exchange processes and (iii) contributions waters by superficial infiltration. These two phenomena are confirmed by the ACP statistical techniques. The AHC has shown the existence of three groups of water with different chemical compositions.

Keywords: Aquifer, AHC, Essaouira basin, hydrochemistry, mineralization, PCA, semi-arid area, water resources.

INTRODUCTION

Les ressources en eaux des zones semi-arides sont limitées et connaissent de plus en plus une dégradation qualitative et quantitative, résultant d'effets naturels (conditions climatiques) et anthropiques (Bahir et al. 2012 ; Fedrigoni et al 2001). Ces régions sont caractérisées par un déficit hydrique important et passent, depuis des années, par des épisodes de sécheresse caractérisés par des pluies faibles qui ont des conséquences dévastatrices sur les processus de


développement socio-économique dans ces régions. Face à cette situation, l'exploitation des nappes profondes et peu profondes, qui contiennent des réserves considérables, demeure indispensable pour répondre à des besoins d'ordre industriels, agricoles, touristiques et domestiques continuellement croissants (Bahir et al. 2007; Mamou & Kassah 2002).

Le bassin d'Essaouira qui fait partie de ces zones, ne fait pas exception à cette règle. Plusieurs études réalisées au sein de ce bassin dans le but d'évaluer la qualité de l'eau souterraine ont démontré de nombreuses sources de contamination (Chamchati, 2014; Chamchati et Bahir, 2013,2011; Bahir et al., 2012, 2008; Galego et al., 2005; Mennani et al., 2001). Les eaux souterraines qui constituent l'élément majeur dans le développement des pays gouvernés par un climat semi-aride, se trouvent aujourd'hui menacés de contamination. Il convient donc de connaître et suivre la qualité de cette ressource. L'aquifère pris comme exemple ici est celui du Barrémien-Aptien situé dans la partie sud du bassin d'Essaouira. L'objectif de cette investigation est l'évaluation de la qualité des eaux souterraines de cette nappe et la compréhension des mécanismes à l'origine de la minéralisation de ces eaux.

DESCRIPTION DE LA ZONE D'ETUDE

Situé dans le haut atlas occidental, entre les latitudes 31°05' et 31°40'N et les longitudes 9°00' et 9°50'W, le bassin d'Essaouira comprend plusieurs systèmes aquifères. Parmi ces systèmes, l'aquifère Barrémien-Aptien, qui fait l'objet de cette étude, est localisé à une trentaine de kilomètres au Sud de la ville d'Essaouira. L'aquifère Barrémien-Aptien est limité au Nord par l'Oued Tidzi, l'anticlinal d'Amséttene au Sud, les formations du Crétacé Inférieur et par l'Océan Atlantique à l'Ouest (figure1). Sa superficie est d'environ 252 km² (Mennani, 2001) pour une population estimé à 50 000 habitants.

La zone d'étude est soumise à un climat méditerranéen de type semi-aride, caractérisé par deux saisons : l'une pluvieuse s'étale du mois de novembre jusqu'au mois de mars et l'autre sèche s'intercale entre avril et octobre. Les précipitations moyennes annuelles sont autour de 300mm, les températures autour de 20°C et l'évapotranspiration moyenne est d'environ 910 mm/an. Hydro-géo-graphiquement, la région est drainée par le bassin de Tidzi dont la rivière principale est l'Oued Tidzi qui prend sa naissance au niveau de la région d'Imi-n-Tlite et s'écoule sur une longueur de 38km pour se déverser dans l'Océan Atlantique (figure1).

Figure 1 : Carte de situation géographique du secteur d'étude et emplacement des points échantillonnés en juin 2015.

Au plan hydrogéologique, le bassin d'Essaouira comprend une série sédimentaire qui s'échelonne du Trias au Quaternaire contenant ainsi plusieurs aquifères tel que celui du Barrémien-Aptien. Le Barrémien correspond à une alternance de marnes ou marno-calcaires grises (avec des traces de gypse), de calcaires fossilifère et lumachelliques fracturés et de grès. Quant à l'Aptien, il est constitué d'une alternance d'argiles rouges et de grès avec des intercalations de dolomies gréseuses ou de calcaires bioclastiques ainsi que de fins niveaux marneux (Rey et al., 1988; Duffaud et al., 1966; Duffaud, 1960).

Les données piézométriques récoltées lors de la campagne de juin 2015, ont permis de dresser la carte piézométrique de cette nappe (figure 2). On y constate un écoulement général orienté SE-NW imposé par le flanc nord de l'anticlinal d'Amséttene et le soulèvement des terrains crétacés inférieurs de la partie Est

avec une zone d'alimentation, ou de recharge, située à l'Est et Sud-Est. Le plan d'eau est situé à 340m en amont et à 20m en aval. Le gradient hydraulique varie entre 3.30% en amont et 3.15% en aval.

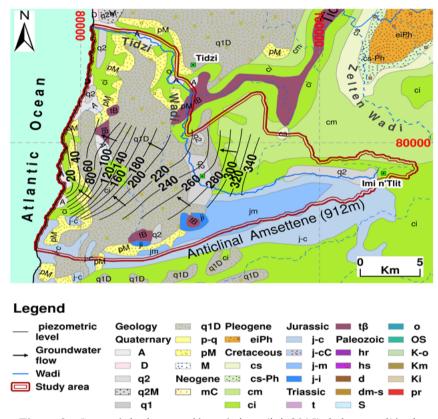


Figure 2 : Carte géologique et piézométrique (juin2015) de la zone d'étude.

MATERIEL ET METHODES

Echantillonnage et analyses hydrochimiques

Cette étude est basée sur les analyses physico-chimiques des 26 échantillons prélevés en juin 2015. La température, le pH et la conductivité électrique (CE) ont été mesurés sur le champ. Au laboratoire, les analyses ont portées sur les

éléments chimiques majeurs cations (Ca²⁺, Mg²⁺, Na⁺ et K⁺) et anions (HCO₃⁻, Cl⁻, SO₄²⁻ et NO₃⁻). Le niveau des eaux est aussi mesuré.

Sur le terrain, ont été mesurés les paramètres physiques et la profondeur de la nappe : (1) Le pH et la température par un pH/mV/°C mètre type ADWA AD111. (2) La conductivité par un conductimètre de terrain type HANN HI 8733. (3) La profondeur du niveau de l'eau via une sonde piézométrique sonore de 200m.

Les éléments chimiques majeurs sont déterminés par la chromatographie ionique en utilisant DIONEX ICS-1100 au sein du Centre d'Analyse et de Caractérisation (CAC) à la Faculté des Sciences Semlalia, UCA, Marrakech.

Traitement des données

Les deux approches, hydrochimique et statistique sont utilisées pour traiter les résultats des analyses physico-chimiques. La méthode statistique est basée sur l'utilisation de la technique de l'Analyse en Composantes Principale (ACP) et de la Classification Ascendante Hiérarchique (CAH) pour l'étude des phénomènes à l'origine de la minéralisation des eaux. Ces deux méthodes statistiques sont couramment utilisées dans le domaine des sciences de l'eau.

L'ACP est une méthode statistique descriptive dont l'objectif est de présenter graphiquement le maximum d'informations contenues dans une base de données. Cette base est souvent une matrice dont les lignes représentent les individus (e.g. points d'eau) et les colonnes représentent les variables (e.g. pH, T°, CE, les éléments majeurs). Elle permet de réduire le nombre des variables afin de projeter le nuage de points dans un plan 2D (Cloutier et al. 2008, Yidana et al. 2008).

La CHA est une technique qui mesure la dissimilarité ou la similarité entre les échantillons afin de définir un critère d'agrégation des classes (Templ et al. 2008). Les classes ainsi obtenues produisent un arbre binaire de classification appelé "dendrogramme".

Les deux techniques statistiques sont traitées sous le logiciel XLSTAT.

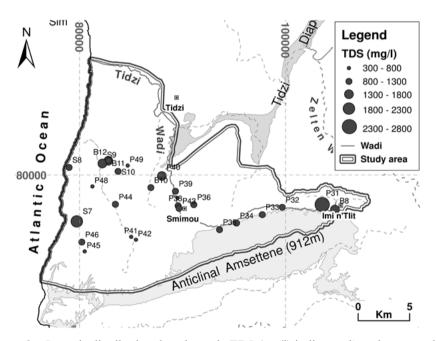
Quant à l'approche hydrochimique, le diagramme de Piper et celui de Durov étendu sont utilisés pour la classification des eaux et pour définir les processus hydrochimiques plausibles dominant la chimie des eaux souterraines, telles que le mélange, échange d'ions et la dissolution affectant la composition des eaux souterraines. Ces diagrammes sont très utilisés en hydrochimie et donne des résultats satisfaisants (Abid et al. 2014, Bahir et al. 2014; 2012, El moukhyar et al. 2014, Petalas et al., 2009, Trabelsi et al 2005, Al Bassam et al 1997,).

Les analyses ont été effectuées à partir des 11 variables suivantes : CE, pH, T, HCO₃, SO₄², Cl, NO₃, Na⁺, K⁺, Ca²⁺et Mg²⁺.

RESULTATS ET DISCUSSION

Hydrochimie

Matières dissoutes totales (TDS)


Tous les échantillons montrent des températures inférieures à 30°C, on parle donc d'eau hypothermale. La variation de la température n'est pas liée à la profondeur de captage, il semble que cette variation reflète la température de l'air lors des processus de recharge. Le pH oscille entre 7.19 et 8.18.

Les valeurs de TDS des eaux souterraines de l'aquifère Barrémien-Aptien varient entre un minimum de 300 mg/l (P.41) et un maximum de 2800 mg/l (P.31) (tableau 1). La carte de la distribution spatiale du TDS (figure3) montre une relative homogénéité, les faibles valeurs (300-1300mg/l) sont localisées dans la partie centrale, Sud et Est de l'aquifère. Cela peut refléter un effet de dilution au niveau de l'aquifère par une recharge locale à partir de l'oued Tidzi (Centre et Est) et de l'infiltration direct suite à la faible profondeur de la nappe au Sud et au centre. L'augmentation du TDS au niveau du point P.31 est due à l'influence des terrains cénomaniens (calcaire dolomitiques et lumachelliques) et des jurassiques lessivés par les précipitations alimentant l'aquifère. Les terrains triasiques salifères et les embruns marins ont aussi attribué à l'augmentation du TDS, c'est le cas des points S.7, S.9, B.11 et P.40 dans la partie Nord et Nord-Ouest et Ouest.

Caractéristiques géochimiques et origine de la salinité

La projection des concentrations des éléments majeurs sur le diagramme de piper (figure 4a) indique la dominance du faciès chimique de type Ca-Mg-Cl (54%) qui se localise dans la partie avale de l'aquifère (B.10, P.37, P.38, P.39, P.40, P.42, P.43, P.44, P.45, P.46, S.7, S.9 et S.10). Le faciès de type Ca-Mg-HCO₃ (31%) gouverne la partie amont (B.8, P.32, P.33, P.34, P.35, P.36, P41 et P.49). Les points B.11, B.12 et S.8 présentent un faciès de type Na-K-Cl (11%) et le point P.48 montre le Na-K-HCO₃ (4%).

Le diagramme de Durov étendu a pour axe de coordonnés deux diagrammes de Piper des anions et cations respectivement. La situation des échantillons dans les casiers 1 à 9 du diagramme de Durov (figure 4b) est utilisée pour l'identification des processus et des réactions chimiques qui gouvernent dans l'aquifère. Le casier 1 représente les eaux de faible salinité et correspondent à des eaux d'infiltration récentes de type HCO₃-Ca. Les casiers 2 et 3 représentent une progression des eaux vers la minéralisation par enrichissement en Na et HCO₃ aux dépens du Ca (échange de Ca contre Na du réservoir, dissolution des carbonates). Le casier 4 correspond à la dissolution des minéraux riche en calcium (calcite et gypse). Dans le casier 5, on retrouve plus de la moitié des échantillons, c'est le casier où la composition des eaux est le résultat des réactions de mélange des eaux de différentes origines. Le casier 6 indique le mélange des eaux et les échanges d'ions. La salinité la plus élevée se présente dans le casier 9 où on assiste à un mélange avec les eaux de mer. Les échantillons affectés par mélange et échange d'ions inversé sont tracés dans les deux casiers 7 et 8.

Figure 3 : Carte de distribution de valeurs de TDS (mg/l) indiquant l'emplacement des puits d'échantillonnage.

Comportement hydrogéochimique d'un aquifère côtier des zones semi-arides : cas de l'aquifère Barremien-Aptien du bassin d'Essaouira (Maroc occidental)

Pour le cas de l'aquifère Barrémien-Aptien, plus de 80% des échantillons sont regroupés dans les deux casiers 5 et 8 respectivement, le reste se trouve dans le casier 4 à l'exception de deux échantillons qui se trace chaque un dans les deux casiers 1 et 2. Ainsi, la minéralisation les eaux de la zone d'étude est le résultat à la fois d'un mélange des eaux de différentes origines et du phénomène d'échange d'ions inverse.

Tableau 1 : Les paramètres physico-chimiques des eaux souterraines de l'aquifère Bar-Apt (bassin d'Essaouira).

21 749 3650 222.630 200.455 136.218 106.563 937.808 579.904 456.052 21.4 7.37 1700 126.183 112.859 39.723 36.951 382.955 121.397 127.965 22.3 7.40 1776 168.970 92.509 55.560 52.013 485.319 204.341 110.788 20.3 7.66 1280 131.277 44.783 36.373 50.858 428.081 76.169 51.710 20.3 7.64 1530 121.586 98.598 49.109 53.291 494.542 106.496 164.185 20.3 7.84 1530 121.586 98.598 49.109 53.291 494.542 106.496 164.185 22.0 7.86 1365 93.417 21.621 87.460 68.517 144.991 165.302 53.422 22.1 7.86 1365 13.3 48.973 125.341 85.029 353.874 266.226 107.455	Ech.	°C T	Hd	CE µs/c m	Ca (mg/l)	Mg	Na	*	нсо3	CI	SO_4	NO_3	TDS	i.e.b
20.3 7.37 1700 126.183 112.859 39.723 56.951 582.955 121.397 127.965 20.3 7.40 1776 168.970 92.509 55.560 52.013 485.319 204.341 110.788 20.3 7.66 1280 131.277 44.783 36.373 50.858 428.081 76.169 51.710 20.3 7.84 1530 121.586 98.598 49.109 53.291 494.542 106.496 164.185 22.0 7.86 1351 95.079 43.907 63.843 53.309 315.897 106.496 164.185 22.1 7.86 1356 83.417 21.621 87.460 68.517 144.991 165.302 53.422 22.1 7.86 1356 189.162 14.234 85.029 323.874 266.226 105.455 22.2 7.24 3250 189.162 14.278 152.866 102.823 238.742 266.226 105.455	P.31	21	7.49	3650	222.630	200.455	136.218	106.563	937.808	579.904	456.052	71.495	2711	0.47
20.3 7.40 1776 168.970 92.509 55.560 52.013 485.319 204.341 110.788 20.3 7.66 1280 131.277 44.783 36.373 50.858 428.081 76.169 51.710 20.3 7.84 1530 121.586 98.598 49.109 53.291 494.542 106.496 164.185 22.0 7.90 1351 95.079 43.907 63.843 53.309 116.897 116.91 164.187 164.991 164.187 164.187 164.187 165.31 164.189 165.32 53.415 55.415 53.422 53.422 53.415 55.415 53.422 53.432 53.43	P.32	21.4	7.37	1700	126.183	112.859	39.723	56.951	582.955	121.397	127.965	11.751	1180	0.07
20.3 7.66 1280 131.277 44.783 36.373 50.858 428.081 76.169 51.710 20.3 7.84 1530 121.586 98.598 49.109 53.291 494.542 106.496 164.185 22.0 790 1351 95.079 43.907 63.843 53.309 315.897 110.827 55.415 22.1 7.86 1365 83.417 21.621 87.460 68.517 144.991 166.302 53.415 22.1 7.45 2330 156.913 48.973 125.341 85.029 323.874 266.226 105.455 22.2 7.24 3250 116.932 51.382 84.823 54.341 259.409 250.164 74.752 22.2 7.24 3250 189.162 142.278 152.866 102.828 258.742 35.410 37.536 22.2 7.70 966 117.815 14.111 29.903 12.193 149.054 17.560	P.33	22.3	7.40	1776	168.970	92.509	55.560	52.013	485.319	204.341	110.788	42.098	1212	0.35
20.3 7.84 1530 121.586 98.598 49.109 53.291 494.542 106.496 164.185 22.0 790 1351 95.079 43.907 63.843 53.309 315.897 110.827 55.415 22.7 7.86 1365 83.417 21.621 87.460 68.517 144.991 165.302 53.425 22.1 7.86 1365 83.417 21.621 87.60 323.874 266.226 105.455 22.3 7.58 1750 116.932 51.382 84.823 54.341 259.409 250.164 74.752 22.0 7.24 3250 189.162 142.278 15.217 15.007 100.721 34.100 29.890 22.0 7.70 966 117.815 14.111 29.903 12.193 153.439 149.054 17.560 22.0 7.50 2040 118.960 48.668 107.525 111.062 366.780 241.979 108.819	P.34	20.3	7.66	1280	131.277	44.783	36.373	50.858	428.081	76.169	51.710	42.939	862	-0.34
22.0 790 1351 95.079 43.907 63.843 53.309 315.897 110.827 55.415 22.1 7.86 1365 83.417 21.621 87.460 68.517 144.991 165.302 53.422 22.1 7.45 2330 156.913 48.973 125.341 85.029 323.874 266.226 105.455 22.1 7.45 2330 156.913 48.973 125.341 85.029 323.874 266.226 105.455 22.2 7.58 1750 116.932 51.382 84.823 54.341 259.409 250.164 74.752 22.0 7.24 3250 189.162 142.278 152.866 102.828 258.742 635.301 177.581 22.2 7.70 966 117.815 14.111 29.903 12.193 153.439 173.605 22.2 7.50 2040 118.960 48.668 107.525 111.062 36.780 241.979 108.819	P.35	20.3	7.84	1530	121.586	98.598	49.109	53.291	494.542	106.496	164.185	5.271	1093	-0.17
22.1 7.86 1365 83.417 21.621 87.460 68.517 144.991 165.302 53.422 22.1 7.45 2330 156.913 48.973 125.341 85.029 323.874 266.226 105.455 22.3 7.58 1750 116.932 51.382 84.823 54.341 259.409 250.164 74.752 22.0 7.24 3250 189.162 142.278 152.866 102.828 258.742 635.301 177.581 19.9 8.18 490 51.492 11.869 15.217 15.007 100.721 34.100 29.890 22.5 7.70 966 117.815 14.111 29.903 12.193 153.439 149.054 17.560 22.6 7.50 2040 118.960 48.668 107.525 111.062 366.780 241.979 108.819 22.4 7.65 2120 128.130 54.058 104.159 96.297 228.618 366.78 367.77	P.36	22.0	790	1351	95.079	43.907	63.843	53.309	315.897	110.827	55.415	84.168	822	-0.33
22.1 7.45 2330 156.913 48.973 125.341 85.029 323.874 266.226 105.455 22.2 7.58 1750 116.932 51.382 84.823 54.341 259.409 250.164 74.752 22.0 7.24 3250 189.162 142.278 152.866 102.828 258.742 635.301 177.581 19.9 8.18 490 51.492 11.869 15.217 15.007 100.721 34.100 29.890 22.5 7.70 966 117.815 14.111 29.903 12.193 153.439 149.054 17.560 22.4 7.50 2040 118.960 48.668 107.525 111.062 366.780 241.979 108.819 22.4 7.65 2120 128.130 54.058 104.159 96.297 228.618 356.500 75.248 21.8 7.77 2090 37.635 8.201 24.077 24.269 90.022 88.397 28.722	P.37	22.7	7.86	1365	83.417	21.621	87.460	68.517	144.991	165.302	53.422	100.247	725	-0.19
22.3 7.58 1750 116.932 51.382 84.823 54.341 259.409 250.164 74.752 22.0 7.24 3250 189.162 142.278 152.866 102.828 258.742 635.301 177.581 19.9 8.18 490 51.492 11.869 15.217 15.007 100.721 34.100 29.890 22.5 7.70 966 117.815 14.111 29.903 12.193 153.439 149.054 17.560 22.0 7.50 2040 118.960 48.668 107.525 111.062 366.780 241.979 108.819 22.4 7.65 2120 128.130 54.058 104.159 96.297 228.618 356.500 75.248 18.8 7.77 2090 37.635 8.201 24.269 90.022 88.397 28.722 24.2 8.00 1291 39.507 12.753 93.556 56.905 250.450 142.759 31.484	P.38	22.1	7.45	2330	156.913	48.973	125.341	85.029	323.874	266.226	105.455	155.723	1268	-0.02
22.0 7.24 3250 189.162 142.278 152.866 102.828 258.742 635.301 177.581 19.9 8.18 490 51.492 11.869 15.217 15.007 100.721 34.100 29.890 22.5 7.70 966 117.815 14.111 29.903 12.193 153.439 149.054 17.560 22.0 7.50 2040 118.960 48.668 107.525 111.062 366.780 241.979 108.819 22.4 7.65 2120 128.130 54.058 104.159 96.297 228.618 356.500 75.248 18.8 7.77 2090 37.635 8.201 24.077 24.269 90.022 88.397 28.722 21.6 7.75 1430 104.514 22.325 63.600 51.988 261.777 214.770 40.339 24.2 8.00 1291 39.507 12.753 93.556 56.905 250.450 142.739 31.444 <th>P.39</th> <th>22.3</th> <th>7.58</th> <th>1750</th> <th>116.932</th> <th>51.382</th> <th>84.823</th> <th>54.341</th> <th>259.409</th> <th>250.164</th> <th>74.752</th> <th>64.596</th> <th>956</th> <th>0.25</th>	P.39	22.3	7.58	1750	116.932	51.382	84.823	54.341	259.409	250.164	74.752	64.596	956	0.25
19.9 8.18 490 51.492 11.869 15.217 15.007 100.721 34.100 29.890 22.5 7.70 966 117.815 14.111 29.903 12.193 153.439 149.054 17.560 22.0 7.50 2040 118.960 48.668 107.525 111.062 366.780 241.979 108.819 22.4 7.65 2120 128.130 54.058 104.159 96.297 228.618 356.500 75.248 18.8 7.77 2090 37.635 8.201 24.077 24.269 90.022 88.397 28.722 21.6 7.75 1430 104.514 22.325 63.600 51.988 261.777 214.770 40.339 24.2 8.00 1291 39.507 12.753 93.556 56.905 250.450 142.759 31.484 23.0 7.95 6.24 6.29 28.01 11.303 140.635 41.233 20.814	P.40	22.0	7.24	3250	189.162	142.278	152.866	102.828	258.742	635.301	177.581	20.326	1679	0.48
22.5 7.70 966 117.815 14.111 29.903 12.193 153.439 149.054 17.560 22.0 7.50 2040 118.960 48.668 107.525 111.062 366.780 241.979 108.819 22.4 7.65 2120 128.130 54.058 104.159 96.297 228.618 356.500 75.248 18.8 7.77 2090 37.635 8.201 24.077 24.269 90.022 88.397 28.722 21.6 7.75 1430 104.514 22.325 63.600 51.988 261.777 214.770 40.339 24.2 8.00 1291 39.507 12.753 93.556 56.905 250.450 142.759 31.484 23.0 7.95 6.24 64.992 6.260 78.61 11.303 140.635 41.233 20.814	P.41	19.9	8.18	490	51.492	11.869	15.217	15.007	100.721	34.100	29.890	35.000	293	-0.09
22.0 7.50 2040 118.960 48.668 107.525 111.062 366.780 241.979 108.819 22.4 7.65 2120 128.130 54.058 104.159 96.297 228.618 356.500 75.248 18.8 7.77 2090 37.635 8.201 24.077 24.269 90.022 88.397 28.722 21.6 7.75 1430 104.514 22.325 63.600 51.988 261.777 214.770 40.339 24.2 8.00 1291 39.507 12.753 93.556 56.905 250.450 142.759 31.484 23.0 7.95 6269 28.61 11.303 140.635 41.233 20814	P.42	22.5	7.70	996	117.815	14.111	29.903	12.193	153.439	149.054	17.560	37.389	531	0.62
22.4 7.65 2120 128.130 54.058 104.159 96.297 228.618 356.500 75.248 18.8 7.77 2090 37.635 8.201 24.077 24.269 90.022 88.397 28.722 21.6 7.75 1430 104.514 22.325 63.600 51.988 261.777 214.770 40.339 24.2 8.00 1291 39.507 12.753 93.556 56.905 250.450 142.759 31.484 23.0 7.95 624 64.992 6269 28.61 11.303 140.635 41.233 20.814	P.43	22.0	7.50	2040	118.960	48.668	107.525	111.062	366.780	241.979	108.819	39.210	1143	-0.10
18.8 7.77 2090 37.635 8.201 24.077 24.269 90.022 88.397 28.722 21.6 7.75 1430 104.514 22.325 63.600 51.988 261.777 214.770 40.339 24.2 8.00 1291 39.507 12.753 93.556 56.905 250.450 142.759 31.484 23.0 7.95 6.24 64.992 6.269 28.661 11.303 140.635 41.233 20.814	P.44	22.4	7.65	2120	128.130	54.058	104.159	96.297	228.618	356.500	75.248	81.442	1124	0.31
21.6 7.75 1430 104.514 22.325 63.600 51.988 261.777 214.770 40.339 24.2 8.00 1291 39.507 12.753 93.556 56.905 250.450 142.759 31.484 23.0 7.95 624 64.992 6269 28.661 11.303 140.635 41.233 20.814	P.45	18.8	7.77	2090	37.635	8.201	24.077	24.269	90.022	88.397	28.722	2.593	304	0.33
24.2 8.00 1291 39.507 12.753 93.556 56.905 250.450 142.759 31.484 23.0 7.95 624 64.992 6.269 28.661 11.303 140.635 41.233 20.814	P.46	21.6	7.75	1430	104.514	22.325	63.600	51.988	261.777	214.770	40.339	43.681	803	0.32
23.0 7.95 624 64.992 6.269 28.661 11.303 140.635 41.233 20.814	P.48	24.2	8.00	1291	39.507	12.753	93.556	56.905	250.450	142.759	31.484	30.292	859	-0.37
	P.49	23.0	7.95	624	64.992	6.269	28.661	11.303	140.635	41.233	20.814	47.744	362	-0.32

Tableau 1 : Suite.

Ech.	T °C	Hd	CE µs/cm	Ca (mg/l)	Mg	Na	K	HCO ₃	Cl	SO_4	NO ₃	TDS	i.e.b
B.8	25.2	7.19	1640	133.099	148.448	40.060	67.314	650.722	175.672	129.349	9.182	1354	0.30
B.10	24.2	7.58	1799	121.870	72.708	87.445	55.002	235.032	274.092	71.109	78.775	966	0.33
B.11	23.9	8.10	2400	60.345	38.313	173.558	106.305	411.846	320.796	129.211	58.113	1299	-0.14
B.12	22.2	7.85	3400	140.129	91.271	192.959	102.594	309.706	637.355	233.688	70.442	1778	0.39
S.7	21.7	7.59	3580	180.181	78.576	188.923	105.345	447.722	755.766	129.282	35.610	1921	0.49
S. 8.	21.2	8.09	1875	59.887	41.191	110.069	52.768	205.863	336.181	80.966	34.986	922	0.35
8.9	24.7	7.48	2640	137.146	85.477	151.388	103.024	140.608	514.773	137.460	68.524	1338	0.37
8.10	23.6	7.67	1820	111.419	60.355	84.259	15.985	362.945	263.279	64.524	69.452	1032	0.45

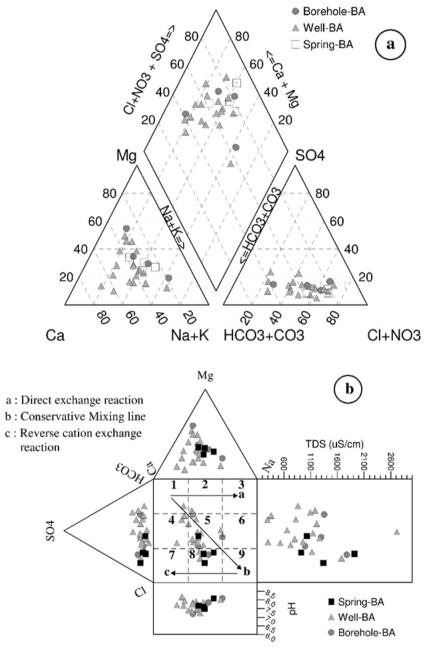


Figure 4 : Diagramme de Piper (a) et celui de Durov (b) des eaux souterraines de l'aquifère Barrémien-Aptien.

Les diagrammes de dispersion des différents éléments majeurs versus TDS (figure 5a-f) montrent que la minéralisation des eaux est principalement dominée par Cl, HCO₃, Ca, Na, Mg et SO₄. Dans l'ordre de déchiffrer l'origine de la salinité, les diagrammes de corrélation entre les éléments majeurs sont établés (figure 6a-e). Le Ca est corrélé avec le Mg (R²= 0.804) indiquant une origine évaporitique et/ou dolomitique. Pourtant, la majorité des points se trouvent au-dessus de la droite 1:1 (figure 6a) montrant ainsi un excès de Ca versus Mg. Celui-ci indique un autre processus géochimique qui affecte la teneur en cation.

Dans la parie amont de l'aquifère, les eaux souterraines (B.8, P.31 et P.33) montrent des teneurs élevées de Ca (>220mg/l) et de Mg (150mg/l) qui peuvent être attribuées à l'effet des terrains cénomaniens (calcaires dolomitiques et lumachelliques) et jurassiques lessivés par les pluies alimentant la nappe. Vers l'aval, la majorité des points présentent un indice d'échange de base (i.e.b.) positif (tableaul), cet indice est calculé suite à la formule (1), donc les eaux échangent les Na contre les Ca et Mg de la roche réservoir.

i. e. b. =
$$\frac{\text{Cl}-(\text{Na+k})}{\text{Cl}}$$
, les concentrations sont en méq/l (1)

La corrélation positive entre la teneur en Na et Cl (R²= 0.903) indique la contribution de la dissolution de l'halite (NaCl) à la minéralisation des eaux souterraines de l'aquifère (figure6d). Les concentrations élevées (>350mg/l) sont observées dans la partie avale. Elles peuvent être expliquées par le lessivage des terrains triasiques salifères. Celui-ci peut être prouvé par la sous-saturation des eaux en halite (SI max= -5.48 et SI min= -7.84) (figure 7).

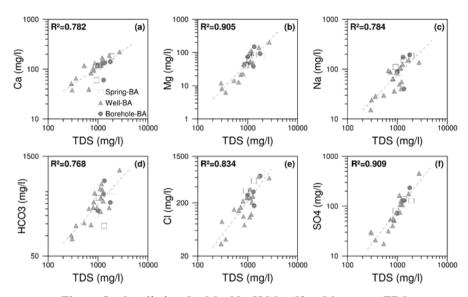
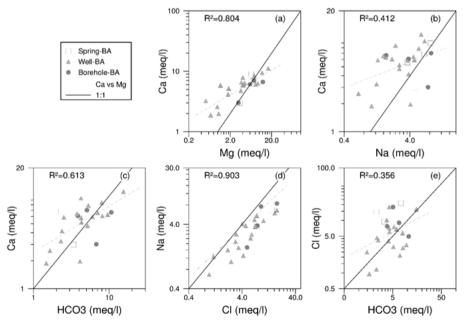
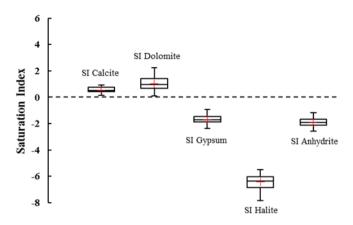




Figure 5: Corrélation Ca, Mg, Na, HCO₃, Cl et SO₄ versus TDS.

Figure 6 : Corrélation Ca vs Mg (a), Ca vs Na (b), Ca vs HCO₃(c), Na vs Cl (d) et Cl vs HCO₃ (e).

Figure 7 : Boites à moustache des indices de saturation en Calcite, Dolomite, Gypse, Halite et Anhydrite des eaux de l'aquifère Barrémien-Aptien.

Etude statistique

Les valeurs propres des facteurs sont regroupées dans le tableau 2. Les deux premiers facteurs F1 et F2représentent 70,10 % de la variance exprimée (tableau 2). Ces facteurs regroupent le maximum de la variance exprimée et sont suffisants pour traduire l'information recherchée. L'analyse des variables de l'ACP normalisée dans le plan factoriel F1-F2 est représentée dans la figure 8. Ce graphe met en évidence deux groupes parmi les paramètres étudiés. Le premier groupe autour de l'axe F1 (52.42% de l'inertie totale du nuage) et qui prend en compte CE, Cl, Na, K, Ca, Mg, SO₄ et HCO₃ montre une minéralisation de l'eau par le phénomène de dissolution de la roche. Le facteur F1 apparaît comme un axe de minéralisation globale de l'eau. Les différentes variables présentent des coefficients de corrélation élevés entre elles. Le facteur F2 explique à lui seul 17.68% de l'inertie totale du nuage, il est caractérisé par NO₃ et T et montre une minéralisation anthropique d'origine superficielle suite à la modeste activité agricole qui se localise au centre (aux alentours du centre Smimou) et au nord du secteur d'étude.

Tableau 2 : Valeurs propres et pourcentage de variabilité exprimée

	F1	F2	F3
Valeur propre	5.766	1.944	1.188
Variabilité (%)	52.422	17.680	10.805
Variabilité cumulée (%)	52.422	70.102	80.907

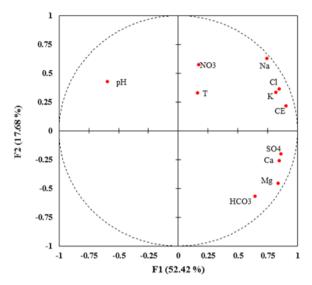


Figure 8 : Valeurs propres et pourcentage de variabilité exprimée

Le dendrogramme (figure 9a) résulte de la classification ascendante hiérarchique (CAH) et met en évidence trois regroupements des variables. Le premier groupe incluant Ca, Mg, HCO₃ et SO₄ explique le phénomène de dissolution de la roche réservoir. La seconde famille regroupe CE, Na, Cl et K et traduit une minéralisation élevée et une infiltration probable des eaux marines dans l'aquifère. Le troisième regroupement qui prend en compte NO₃, T et pH montre une minéralisation liée aux apports superficiels d'origine anthropique. La figure 9b présente la classification des points d'eaux selon leur ressemblance. L'analyse de ce graphe permet de tirer trois classes d'eau :

Classe 1 : Elle regroupe les eaux dont la minéralisation est influencée par la matrice évaporitique s'ajoutant aux embruns marins d'origine atlantique. C'est la partie avale du secteur d'étude.

Classe 2 : Elle correspond aux eaux avec une minéralisation influencée par les formations calcaires dolomitiques et lumachelliques du cénomanien et les roches du jurassique. Elle regroupe la partie amont de l'aquifère.

Classe 3 : C'est l'ensemble des eaux qui se caractérisent par une forte teneur en NO₃. Cette classe regroupe le centre du Smimou (fosses septiques et décharge)

et son entourage et le nord de la nappe qui représente la zone la plus cultivée du secteur d'étude.

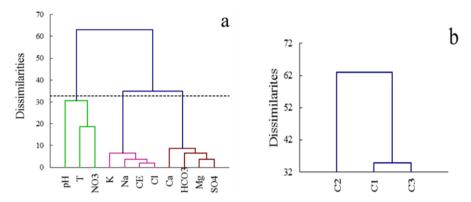


Figure 9 : Valeurs propres et pourcentage de variabilité exprimée

CONCLUSION

Cette étude sur les eaux souterraines de l'aquifère Barrémien-Aptien a permis de mettre en évidence les différents phénomènes géochimiques pouvant avoir lieu au sein de cet aquifère. Les analyses hydrochimiques montrent que les eaux de cette nappe sont généralement de type bicarbonaté calcique pour les eaux de la partie amont (l'Est de l'aquifère) et chloruré calcique ailleurs. Le phénomène d'échange de bases et les processus de dissolution/précipitation des minéraux carbonatés (calcite et dolomite) sont généralement à l'origine de la variation des concentrations des cations des eaux. La dissolution de l'halite contribuerait à la salinisation des eaux de l'aquifère étudié. Ceci est en accord avec l'état de sous-saturation des eaux vis-à-vis ce minéral. Les deux techniques statistiques l'ACP et la CAH confirment les résultats obtenus par l'approche hydrochimique. Cependant, cette investigation permet de disposer d'une base de données pour un suivi de la qualité des eaux de l'aquifère Barrémien-Aptien du bassin d'Essaouira.

Remerciements

Les auteurs remercient tous les personnels du Centre d'Analyse et de Caractérisation (CAC) à la Faculté des Sciences Semlalia, UCA, Marrakech.

REFERENCES BIBLIOGRAPHIQUES

- ABID K., HADJ AMMAR F., WEISE S., ZOUARI K., CHKIR N., ROZANSKI K., OSENBRÜCK K. (2014). Geochemistry and residence time estimation of groundwater from Miocene-Pliocene and Upper Cretaceous aquifers of Southern Tunisia. *Quaternary International* 338: 59-70.
- AL-BASSAM, A.M., AWAD, H.S. AND ALALAWIA, J.A. (1997). Durov plot: a computer program for processing and plotting hydrochemical data, *Groundwater*, Vol. 35, N°. 2, pp.362–367.
- BAHIR M., EL MOUKHAYAR R., CHKIR N. (2014).Recharge and Hydrogeochemical Evolution Groundwater in Semi-Arid Zone (Essaouira Basin, Morocco). *Journal of Resources Development and Management*, Vol.3: 30-48.
- BAHIR M., CHKIR N., TRABELSI R., FRIHA H.A., ZOUARI K. CHAMCHATI H. (2012). Hydro-geochemical behaviour of two coastal aquifers under severe climatic and human constraints: comparative study between Essaouira basin in Morocco and Jeffara basin in Tunisia. *Int. J. Hydrology Science and Technology, Vol. 2, N°1,* 75-100.
- BAHIR M., CARREIRA P., OLIVEIRA DA SILVA M., FERNANDES P. (2008). Caractérisation hydrodynamique, hydrochimique et isotopique du système aquifère de Kourimat (Bassin d'Essaouira, Maroc). *Estudios Geol.*, 64: 61-73.
- BAHIR M., SILVA M.O., CARREIRA P. (2007). Ressources en eau en zones semiaride, état des lieux : cas du bassin d'Essaouira (Maroc atlantique). *Instituto Geológico y Minero de España, MadridISBN : 978-84-7840-712-5 :529-540p*
- BAHIR M., MENDONÇA J.L., MENNANI A., SILVA M.O.(2003).Contribution à l'identification de l'aquifère hauterivien par hydrodynamisme, hydrochimie, isotopie en zone semi-aride : zone côtière d'Essaouira (Maroc). Associação Portuguesa de Recursos Hídricos.1-10.
- CHAMCHATI H. (2014). Evaluation et protection des ressources en eau en zones semiarides ; exemple du bassin d'Essaouira. Thèse de doctorat de l'université Cadi Ayyad, Maroc, 143 p.
- CHAMCHATI H., BAHIR M. (2013). Potential Hydrogeological, Environment and Vulnerability to Pollution of the Plio-Quaternary Aquifers of the Coastal Basin of Essaouira (Morocco). *Journal of Environment and Earth Science*, Vol. 3, No.10, 170-185.
- CHAMCHATI H., BAHIR M. (2011). Contributions of climate change on water resources in semi-arid areas; example of the Essaouira Basin (Morocco). *American journal of scientific and industrial research*, 2(2): 209-215.
- CLOUTIER V., LEFEBVRE R., THERRIEN, R, SAVARD M.M., (2008). Multivariate statistical analysis of geochemical data as indicative of the hydro-geochemical evolution of groundwater in a sedimentary rock aquifer system. *Journal of Hydrology*, 353: 294–313.

- DUFFAUD F., BRUN L., PLANCHOT B., (1966). Bassin du sud-ouest marocain (SW Morocco basin). In: Reyre (ed.), Bassin sédimentaire du littoral africain. *Ass. Serv. Géol. Africain. 1ère partie, Paris*: 5-12.
- DUFFAUD F. (1960). Contribution à l'étude stratigraphique du bassin secondaire du Haut Atlas Occidental(Maroc). Bulletin de la Société Géologique de France,7: 728-734.
- EL MOUKHAYAR R., BAHIR M., CHAMCHATI H., CHKIR N. (2014). Using geochemical and isotope investigations for groundwater management strategies under semi-arid area: case of the Wadi Ouazzi basin (Morocco). *Journal of Environment and Earth Science*, Vol.4, No.7:18-30.
- FEDRIGONI L., KRIMISSA M., ZOUARI K., MALIKI A, ZUPPI G.M. (2001). Origine de la minéralisation et comportement hydrogéochimique d'une nappe phréatique soumise à des contraintes naturelles et anthropiques sévères :exemple de la nappe de Djebeniana (Tunisie). *Earth and Planetary Sciences 332*, 665–671.
- GALEGO F. P., BAHIR M., MENDONÇA J., CARREIRA P., FAKIR Y., M.O. SILVA M.O. (2005). Anthropogenic features in the Sines (Portugal) and Essaouira (Morocco) coastal aquifers: a comparative study of their hydrochemical evolution by a principal component analysis. *Estudios Geol.*, 61: 207-219.
- MAMOU A., KASSAH A. (2002). Eau et développement dans le Sud tunisien. *Cahiers de CERES, Série : Géographie*, n°23, 286p.
- MENNANI A., (2001). Apports d l'hydrochimie et de l'isotopie à la connaissance du fonctionnement des aquifères de la zone côtière d'Essaouira (Maroc occidental). Thèse de doctorat de l'université Cadi Ayyad, Maroc, 173 p.
- MENNANI A., BLAVOUX B., BAHIR M., BELLION Y., JALAL M., DANIEL M. (2001). Apports des analyses chimiques et isotopiques à la connaissance du fonctionnement des aquifères Plio-quaternaire et turonien de la zone synclinale d'Essaouira, Maroc Occidental. *Journal of African Earth Sciences*, Vol. 32, No. 4. pp. 919-835.
- PETALAS, C., PISINARAS, V., GEMITZI, A., TSIHRINTZIS, V.A. AND OUZOUNIS, K., (2009). Current conditions of saltwater intrusion in the coastal Rhodope aquifer system, northeastern Greece, *Desalination*, Vol. 237, Nos. 1–3, pp.22–41.
- REY J., CANEROT J., PEYBERNES B., TAJ EDDINE K., THIEULOY J. P., (1988). Lithostratigraphy, biostratigraphy and sedimentology dynamics of the lower cretaceous deposits on the northern side of Western High Atlas (Morocco). *Cretaceous Research*, 9, 2, 141-158.
- TEMPL M., FILZMOSER P., REIMANN C., (2008). Cluster analysis applied to regional geochemical data: Problems and possibilities. *Applied Geochemistry*, 23: 2198–2213.

- TRABELSI R., ZAÏRI M., SMIDA H., BEN DHIA H., (2005). Salinisation des nappes côtières : cas de la nappe nord du Sahel de Sfax, Tunisie. *C. R. Geoscience*.Vol. 337, pp.515–524. doi:10.1016/j.crte.2005.01.010.
- YIDANA S.M., OPHORI D., BANOENG-YAKUBOB B., (2008). A multivariate statistical analysis of surface water chemistry data-The Ankobra Basin, Ghana. *Journal of Environmental Management*, 86: 80–87.