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Abstract—Hand pose estimation is a significant research topic

for various computer vision applications. Nonetheless, reliable
and robust pose estimation with existing methods remains chal-
lenging due to the complex anatomy of the hand and the varying
shapes and sizes of hands. The traditional approach involved
using depth sensors or multi-camera setups. However, with the
advent of deep learning, there has been a shift towards using
deep neural networks to learn, grasp, and manipulate objects
accurately.
In this paper, we propose an end-to-end framework -called
”ResUnet network” that can efficiently detect and estimate the
position of a human hand from a monocular RGB image. The
architecture includes three modules, feature extraction, 2D pose
regression, and 3D hand estimation. The first module extracts the
feature maps of the cropped hand to generate 2D heatmaps. The
second module uses the previous outputs to regress the 2D pose
coordinates employing Latent Heatmaps Representation (LHR).
The last module concatenates the intermediate features with the
upsampling block to process 3D regression and predict the 3D
bones using a tree structure of the hand. Quantitative and qualita-
tive results on three datasets GANerated, SynthHands, and Stereo
Hand Pose Tracking Benchmark(STB), consistently demonstrate
that our regression approach outperforms the current state-of-
the-art hand pose estimation methods.

Index Terms—Hand pose estimation, occlusion, RGB image,
deep learning, Human-Computer Interaction

I. INTRODUCTION

Hand pose estimation has emerged as a critical focus
within the field of computer vision, finding applications in
various domains such as Virtual Reality (VR), Augmented
Reality(AR), Mixed Reality(MR), and Human-Computer
Interaction(HCI). These applications encompass areas such
as sign language interpretation, activity detection, gesture
recognition, and interactive gaming. The evolution of
AR/VR/MR technology, including devices like VR headsets,
Head-Mounted Displays(HMDs), wearable glasses, and
technologies such as Microsoft Hololens, has empowered
human hands to engage with virtual objects in real-time.
Additionally, modern cameras are capable of capturing
high-resolution depth images, due to commercial options such
as Kinect or Intel Realsense, which are readily accessible and
provide depth data.

In contrast, hand pose estimation adopts a regression ap-
proach to reconstruct the hand’s skeletal structure in a 3D
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space. However, despite extensive research efforts (as evi-
denced by studies such as [1], [3], [12]), addressing these
challenges remains difficult due to various inherent complex-
ities. These challenges include issues such as occlusion, the
similarity in appearance of fingers, rapid hand movements, and
the high degree of freedom associated with hand articulation.
Moreover, the presence of noise and variability stemming from
diverse lighting conditions, camera angles, and hand shapes
further accentuates the difficulty of these tasks.

The rapid progress of deep learning methodologies in the
realm of computer vision has significantly mitigated many of
the challenges previously mentioned in hand pose estimation.
Researchers have dedicated substantial time and energy to
tackling this pressing issue, resulting in a multitude of so-
lutions.

In summary, our research makes the following significant
contributions:

o We introduce an innovative deep-learning framework de-
signed for the comprehensive estimation of both 2D and
3D hand poses from an individual’s perspective, reducing
the need for specialized equipment.

e We address the challenge of hand occlusion during
interactions with objects by leveraging our “ResUnet
network”. This network is capable of reliably predicting
hand poses by utilizing two key representations: the La-
tent Heatmap Representation (LHR) and the tree structure
of the hand.

« To enhance the accuracy and quality of our training data,
we apply data augmentation techniques based on this
network. This augmentation improves the effectiveness
of estimating hand interactions.

o Through extensive analysis, we demonstrate the effi-
ciency and robustness of our approach. We validate
our proposal by conducting tests on various synthetic
benchmark datasets and comparing its performance with
that of existing methods.

II. SYSTEM OVERVIEW
A. Architecture

Our main objective is to propose a novel deep-learning
architecture to estimate 2D and 3D poses from a single RGB



image destined to resolve the occlusion problem.

The 3D hand pose is represented by a sequence of 3D joint
coordinates,®3P = {(b}f:l € T3p where T3p is our case
3D-dimensional hand joint space, with K= 21. The 2D hand
pose estimation is depicted by a two-dimensional array joint
coordinated,

where ®20 = {¢}K | € Syp is the K-dimensional hand joint
space with K= 21.

The proposed framework, the "ResUnet” network, combines
ResNet-34 layers with Unet as a based backbone, which is
particularly effective for tasks where input and output have
similar sizes. Unet network comprises two main paths: The
contracting path used a pre-trained ResNet-34, a 34-layer
ResNet network to extract the main features from RGB
cropped hand image I € R128x128X3_ The second path of
Unet, called the Expansive path, includes four continuous
multi-features combined with upsample Blocks named Unet-
Block, as shown in Fig.1

The first Unet-Block uses the fusion of two features as
input F, = {F4,F3} and outputted the grouped features
F,.: and employ bilinear upsample to increase the quality
of input images and acquire multi-scale features. After that,
estimate 2D heatmaps before passing it to the upcoming
Unet-Block. The remainder Unet-Blocks have a similar format
with distinct input features. We concatenate for each block
the upsampling layer with the respective feature vector to
be fed later in the convolutional layers, which is denoted IFg;p,.

Pretrained ResNet34 Unet Blocks Latent Heatmap Representation(LHR)

Downsampling

30 Features
']
W N
. vV

v

3D vactors. 3D pose

PM Probabliity Map

3D pose regressor

Fig. 1: The overall pipeline of our architecture for estimating
2D and 3D pose regression.

The output of the last block with a size of 64. Furthermore,
we add upsample layer with bilinear mode followed by
two convolution layers separate with RELU as an activation
function to obtain nonlinear transformation and enhance
our architecture ability to fit data. The output is a tensor
of size (21, 64). We get the 2D feature heatmaps from the
Unet-blocks, including pose data from intermediate outputs.

We employ Latent Heatmap Representation(LHR), which
outperforms others and is deemed the more reliable method for
predicting the 2D pose coordinates throughout the prediction
of a 2D heatmap. This approach represents the hand pose as a
2D latent heatmap where each pixel corresponds to a specific
joint location. The value at each pixel in the heatmap indicates
the likelihood of the corresponding joint being present at
that location. The input to the LHR network is a single
image fitted into the network. Once the network processes the
image, a 2D heatmap is generated using a UnetBlock with a
skip connection. The outputted has saved the features of the
learnable model as latent variables F2P to approximate 2D
latent heatmaps.

This function map converts the tensor values to a probability
distribution, so the sum of the values in each channel is strictly
added to one. This ensures that the probabilities assigned
to each keypoint of the hand are normalized and can be
interpreted as a 2D probabilities map. As mentioned in formula
2:
cap(Bif ;7"
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While p represents the probability map point,Q is the sequence
of all pixels on the 2D feature map f 2P of i*" joint, B;is
a factor that can be learned to control the probability map’s
spread.
The 2D joint coordinates of the k" keypoint are then derived
as the weighted mean for x and y coordinates, where weights
are values from the normalized heatmaps and the generated
X, y coordinates fall within the range[0, image width].

PM;(p) =
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The second branch of our overall framework is to regress the
3D pose of a hand. We conduct such representation, a tree
structure of a hand, as shown in Fig.4. This representation
predicts the bones instead of joints because it is more accurate
and stable to define.

For notation consistency, the bone is defined as S = {Sk|k =
1. k}

Fig. 2: The proposed hand bones representation.

For each joint .J'", we refer to it as related bone as a direct
vector pointing from a bone to its origin. As illustrated in the
following equation:

B;=J; - Jparent(i) 3)



Where the Jp,qreni(i) is @ predefined function that returns the
index of the parent joint of the current joint .J;. Our network
backbone structure comprises two convolutional layers. Fol-
lowing each convolutional layer with a Rectified Linear Unit
(ReLU) as the activation function that produces 3D feature
maps. Every two convolutional layers are preceded by a max-
pooling layer. Then, we concatenate the process 3D features
with intermediate features. We flatten by employing two fully
connected layers. The model outputs a tensor of size (20, 3)
representing 3D coordinates of K=20 bones. When calculating
the global coordinate system of a specific joint, the local
coordinates of all bones along the path are summed together.
During learning, bones are supervised. For that, we provide
the following equation to produce the bones lossLg:
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III. IMPLEMENTATION DETAILS

We conducted experiments for our method using a personal
computer. To implement our deep learning approach, we
employed PyTorch version 1.8 along with CUDA version
10.1 and cuDNN version 7.6.4. To accelerate the training
process, we utilized the Nvidia GeForce GTX1070 graphics
card with 64-bit support. The training process was carried out
successfully on a system equipped with 16GB of memory and
an AMD Ryzen 53600 6-Core processor.

A. Dataset Evaluation

We quantitatively assess our proposed framework using
three distinct datasets:

Ganerated dataset: This dataset is among the most recent
and noteworthy RGB-based datasets, specifically designed for
approximating hand poses during interactions with obscured
objects. It comprises approximately 330,000 images of
synthetic hand poses, annotated in three dimensions with a
model featuring 21 joints.

SynthHands: is an RGBD hand pose estimation dataset

that includes 63.5K color and depth images with a resolution
of 640x480. These images were captured from five egocentric
viewpoints of male and female hands using an Intel RealSense
camera. The dataset offers diverse variations, encompassing
differences in skin color, shape, background clutter, wrist and
arm rotation, and hand-object interactions involving seven
distinct object shapes and 145 textures.
Stereo Hand Pose Tracking Benchmark (STB): STB is
widely adopted for training and validating RGB-based 3D
hand pose estimation methods. It contains 18,000 stereo and
depth images, with 15,000 designated for training and 3,000
for testing. The stereo images were captured using a Point
Grey Bumblebee2 stereo camera, while depth images were
obtained using an Intel RealSense F200 depth camera, all with
a resolution of 640x480.

B. Metric Evaluation

In order to assess the precision of our proposed method and
benchmark it against state-of-the-art techniques, we employ
the three most commonly used metrics in hand pose estima-
tion:

EPE (End-Point-Error): EPE quantifies the average 3D
Euclidean distance error between all joints calculated by our
method and the ground truth. In the context of 3D hand
estimation, these distances are expressed in millimetres (mm),
while for 2D estimation, they are measured in pixels (px).

PCK (Percentage of Correct Keypoints): PCK is a
commonly used error metric for 3D hand pose estimation,
assessing the accuracy of localizing specific keypoints within
a defined matching threshold.

AUC (Area Under the Curve): AUC is regarded as the
optimal criterion for evaluating a model’s correctness, as
it measures the proportion of true keypoints (PCK) across
various error thresholds.

IV. EXPERIMENTAL RESULTS

We systematically assess the performance of our method in
both quantitative and qualitative terms, specifically focusing on
its ability to learn 2D and 3D hand pose regression and address
the challenge of occlusion. Additionally, we showcase the
versatility of our approach by achieving accurate predictions
for datasets involving single hands.

A. Quantitative Results

As illustrated in Figure 3(b), we employ the Mean Square
Error (MSE) as a metric to evaluate the error during both
training and validation phases on a GANerated dataset.
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(a) 2D and 3D PCK metrics under the perspective threshold of our
architecture.
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(b) Mean Square Error(MSE) applied during training and validation
test data.

Fig. 3: Quantitative Evaluation of our proposed approach on
GANerated dataset.

SynthHANDS dataset
Comparing the 2D and 3D PCK curves as illustrated in Fig.
4. shows the superiority of our model prediction that aims to
estimate 2D and 3D hand poses on the largest synthHands
dataset. Additionally, because no previous work is employed
in their comparison state on SynthHANDS, only the work of

[7].
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Fig. 4: 3D PCK on SynthHands datasets compared with Li et
al. [7] and their differents training options and architectures.

Stereo Tracking Benchmark dataset

To confirm the enhanced performance of our approach, we
conducted testing on a third benchmark dataset, Stereo DS,
using the same metrics as in our previous experiments. On the
other hand, we perform a comparison with the recent methods
using the 3D PCK evaluation metrics as illustrated in Fig.
5 [4], [8]-[11], [13] that have gained a lot of attention due
to the best results using STB dataset. We demonstrate that
our AUC[20-50](mm)is about 0.999 is superior to all recent
approaches.
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Fig. 5: Comparison with the SOTA methods [2], [3], [5]-
[7] on the STB dataset using 3D PCK. The X-axis is the
threshold values(i.e., maximum permitted distance between
estimated and ground truth), and Y-axis is the 3D PCK over
the perspective threshold. The "AUC” shown in this curve is
between 20 and 50[mm)].



B. Qualitative Results

In addition to quantitative outputs, we also conduct a
qualitative assessment on three readily available datasets:
GANerated, SynthHands, and STB. This evaluation serves
to showcase the effectiveness of our method in consistently
predicting poses from diverse perspectives, encompassing 2D
and 3D keypoints as well as 2D skeletal structures.

Furthermore, in order to underscore the practicality of our
approach, we extend our analysis to include previously unseen
images, thereby enhancing the reliability of our results in
challenging scenarios characterized by significant occlusion,
as depicted in Figures 6, 7, and 8.
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Fig. 6: Qualitative results on SynthHANDS dataset [10].
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Fig. 7: Qualitative results on GANerated dataset [8].
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Fig. 8: Qualitative results on STB dataset [12].

V. CONCLUSION

In this study, we have tackled the issue of estimating the
2D and 3D hand pose from a single RGB image with solving
the occlusion issue during hand interaction. Our contribution
is based on developing a deep learning model “ResUnet”
network, combining the ResNet and Unet basic network. We



have introduced a 2D regression pose using a Latent Heatmap
Representation(LHR) from RGB input for estimating 2D hand
pose. We have applied a tree structure of the Hand to predict
bones because it is more stable than joints and powerful.
Quantitative and qualitative results show that our proposed
framework significantly outperforms better estimation on
different viewpoints pose and in difficult occlusion cases.
Further, with this model, we can accurately forecast the joint
angles. We compare the effectiveness of these components to
other state-of-the-art methods and find that our approach is
superior to previous research.
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