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Abstract—Communication at millimeter wave (mmWave) of-
fers a promising future for the vehicular network beyond the
fifth generation (B5G), where high-throughput data exchange is
required. However, due to the high mobility and channel atten-
uation in vehicular environments, it becomes more challenging
to establish an efficient mmWave Vehicle-To-Everything (V2X)
communication. To overcome the beam misalignment problem,
we propose a new deep learning approach based on bidirectional
long short-term memory (BiLSTM) model followed by a fully
connected layer to predict the suitable beam pair in real-time,
i.e., the Angle of Departure (AoD) at the mmWave base station
side and Angle of Arrival (AoA) at vehicle side (AoD/AoA) for
which the received signal power is maximized. The BiLSTM-BPP
is performed to identify automatically the most robust beam
pair that connects the mmBS to the vehicle for each vehicle
position. After a set of simulations, the results showed that
BiLSTM-BPP achieves the lowest beam prediction error between
the predicted and the real AoD/AoA compared to traditional
machine learning algorithms. We evaluated the performance of
our proposal in terms of Mean Squared Error (MSE), Mean
Absolute Error (MAE), Median Absolute Error (MedAE), and
Root Mean Square Error (RMSE).

Index Terms—Beyond 5G Network, Millimeter Wave, Vehicu-
lar Communication, Deep-Learning, Beam alignment.

I. INTRODUCTION

Nowadays, Millimeter Wave (mmWave) communication
has become the critical element of Beyond fifth-generation
(B5G) in autonomous vehicular networks [1] [2]. The large
bandwidth of these band frequencies, from 30 GHz to 300
GHz, allows a high transmission rate and a low latency for
Vehicle-To-Everything (V2X) communication, especially in
high dynamic scenarios [3].

However, it is well-known that the central communication
issue at mmWave frequency is the path loss due to the
short-range propagation distance and the signal attenuation
caused by the surrounding static and/or dynamic obstacles
[4]. Many antenna elements should be used with beamforming
technology to overcome this drawback and align the beams on
the millimeter-wave base station (mmBS) and the autonomous
vehicle (AV) sides. This will provide a high overall beamform-
ing gain and ensure a reliable communication link in a high
mobility environment [5].

The beam alignment process has been the focus of most ve-
hicular mmWave communications research in B5G networks.
The research in this field is divided into three main categories;
the first is called Beam Sweeping (exhaustive search), which
examines all possible beam directions at 360° to select the
pair where the signal power is maximum. This process must
be repeated frequently, resulting in a high time and energy loss
[6] [7]. The second category is a vision-aided scheme, which
uses information from radar [8], from Lidar [9], and from the
camera [10]. The third one is called Angle of Departure/Angle
of Arrival prediction, which explores the contextual informa-
tion, such as a vehicle and base station locations, to avoid
the amount of computation and beam selection overhead that
beam-sweeping and vision-aided approaches require.

In this study, we propose a new deep learning approach to
predict the strongest beam pairs on both sides that connect
each vehicle to mmBS, i.e., Angle of Departure (AoD) in
azimuth at the mmBS and the Angle of Arrival (AoA) in
azimuth at the vehicle. More specifically, we formulate the
beam alignment procedure as a regression problem, using
AoA and AoD in azimuth, the location information of mmBS
and vehicles, the path-loss, the received signal power, and
the distance between the vehicle and the mmBS as input to
our proposed BiLSTM-BPP model. The latter comprises four
bidirectional Long Short Term Memory (BiLSTM) layers and
one Fully Connected (FC) layer.

II. SYSTEM MODEL

This section presents the adopted mmWave massive
Multiple-Input Multiple-Output (MIMO) system and a channel
model based on our study. Specifically, the received signal
power (RSP), angle of departure (AoD), and angle of arrival
(AoA).

We consider a downlink mmBS-AV massive MIMO
mmWave vehicular communication system with multiple
mmBS equipped with NA := Nh

A × Nv
A antennas, where

Nh
A arrays are placed horizontally and Nv

A arrays are placed
vertically. We assume the same for autonomous vehicles that
are equipped with MA := Mh

A ×Mv
A, where Mh

A arrays are



placed horizontally and Mv
A arrays are placed vertically. In

addition, the antennas at the mmBS and autonomous vehicles
are placed in uniform planar arrays (UPAs). At time instant k,
the downlink signal received yk ∈ C at the vehicle is given
by:

yk = fHk Hωksk + zk, (1)

where, fk ∈ CMA×1 is the receive beamforming vector, ωk ∈
CNA × 1 is the transmit beamforming vector, H ∈ CNA×MA

represents the channel matrix, and zn ∈ C is the additive
white Gaussian noise (AWGN) with zero mean and variance
of σ2. For the mmWave vehicular network, the mmWave
MIMO channel matrix of the transmission from mmBS to the
autonomous vehicle H ∈ CNA×MA is expressed as follows:

H =

√
NAMA

L

L∑
l=1

βlαr(θl)α
H
t (φl), (2)

where, L is the number of multi-paths, βl is the complex gain
of the lth path. θl and φl are the angle of departure (AoD) and
the angle of arrival (AoA) of the l path, respectively, where the
angles AoD and AoA ∈ [-180°, 180°]. αr and αH

t represent
the steering vectors at the vehicle and the mmBS, given by:

αr(θl) =
1√
MA

[1, ej
2πd
λ cosθl , ..., ejπ(MA−1) 2πd

λ cosθl ]T (3)

αt(φl) =
1√
NA

[1, ej
2πd
λ cosφl , ..., ejπ(NA−1) 2πd

λ cosφl ]T (4)

where λ represents the carrier wavelength, d is the space
between two adjacent antenna, which is set in the mmWave
communication as λ/2.

III. DEEP LEARNING-BASED BEAM PAIR SELECTION

We propose a novel BiLSTM-based Beam Pair Prediction
approach (BiLSTM-BPP) for LOS millimeter vehicular net-
works. The location information establishes a reliable data
transmission with a reduced error probability and beam search
overhead. The procedure scheme is shown in Figure 1. In
the following, we present the main steps of the beam pair
prediction approach by implementing the proposed BiLSTM-
BPP model: database generation, data processing, and beam
pair prediction, as described in algorithm 1.

A. Data generation and processing

Our study uses the DeepMIMO (version 2) dataset. The
dataset is built based on a 3D ray-tracing scenario simulator,
which Remcom develops, Wireless InSite (WI) [11]. The ray-
tracing simulator is used to model radio propagation, and
through the path tracing in the simulation, we obtain the
deepMIMO datasets. The dataset includes AoD in azimuth
and elevation, AoA in azimuth and elevation, phase, received
signal power, path-loss, time-of-arrival, delay spread, mmBS
location, vehicle location, and distance between the mmBS
and the vehicle.

After generating dataset channels from the environment
simulation, we obtain the contextual channel information of

Fig. 1. Deep-Learning Beam Pair Prediction scheme

the vehicular communication environment. The BiLSTM-BPP
is trained with 60% data where we divide the entire database
into three sets such as training, validation, and test sets based
on the ratio 6:2:2. However, before inputting data into the
model, we normalize input data due to the difference in units
between the features.

B. The proposed BiLSTM-BPP model for Beam Pair Predic-
tion

Our study considers the beam misalignment problem as
a regression problem, and we use a supervised learning
method to train our proposed model. The input features for
our proposed BiLSTM-BPP model are AoD and AoA in
azimuth, received signal power, path-loss, vehicle position,
mmBS location, and distance between mmBS and vehicle.
With the BiLSTM approach, the model executes the same
command twice.

The architecture of our proposed approach is presented in
Figure 2, aiming at reaching the best results after several trials.
The architecture consists of one (01) input layer with nine (09)
input features and four (04) BiLSTM layers with hidden sizes
of 256, 128, 64, and 50 neurons, respectively, followed by
a Batch Normalization layer. We then flatten the output and
pass them through a fully connected (FC) layer of size 32 with
a ReLU activation function where Relu(x) = max(x, 0) and
another FC of two outputs with a linear activation function. We
choose Linear activation because it does not modify anything
in the input and returns the value directly.

IV. SIMULATIONS AND NUMERICAL RESULTS

The experimental setup is described in this section, and then
we discuss the performance of the obtained results for beam
pair angle prediction using the proposed BiLSTM-BPP model.

A. Simulation setup

We have considered an outdoor vehicular communication
scenario to validate this proposal to evaluate the proposed
beam pair prediction performance. We have applied the LOS
’O1 60’ scenario operating at a frequency of 60 GHz where all



Fig. 2. The proposed BiLSTM-BPP architecture

the vehicles have a Line-of-sight (LOS) communication with
mmBS.

The objective of the BiLSTM-BPP training is to reduce
the loss function, which is given by the MSE metric be-
tween the predicted value of the BiLSTM-BPP model and
the actual value θi at every step time. As shown in Table
I, the optimizer used was Adam [12] with a learning rate of
0.0001. At the same time, the loss function was the mean
squared error between the predicted and actual angles, which
is widely used in a regression problem. The proposed beam
pair angle prediction is obtained after testing several model
configurations. In this research, we evaluate the performance
of our proposed approach by calculating the error probability
between the predicted angle values and the actual values. We
observe that when we minimize the loss function (MSE), we
are maximizing the received signal power.

TABLE I
BILSTM-BPP TRAINING HYPER-PARAMETERS.

Parameters Values
Optimizer Adam

Learning rate 0.0001
Loss function MSE

Batch size 1024
Epoch 250

Data size 300.000
Data split 60:20:20

B. The obtained results

As shown in Figure 3 and 4, we have evaluated the
performance of our proposed model during the training process
by measuring two metrics, including the loss function (MSE)
and mean absolute error (MAE). The curve starts to flatten

and converge over 250 epochs to maintain at the last epoch a
shallow level of 0.0268 for MSE and 0.1036 for MAE, which
is very acceptable for the beam pair prediction model. We can
also observe that the validation and training curves of MSE
and MAE are close, which means that the proposed BiLSTM-
BPP model did not suffer from overfitting.

Fig. 3. Training and validation loss (MSE) plot of the proposed BiLSTM-BPP
model.

Fig. 4. Training and validation MAE plot of the proposed BiLSTM-BPP
model

To evaluate our proposed model performance, we have
plotted the predicted angle values by the BiLSTM-BPP model
and the actual angle values from the testing set. We can
observe from Figure 5 that the predicted and actual values
of AoD (the top curve) and AoA (the bottom curve) are
almost equal, i.e., there is a strong approximation between
the two values, which confirms that our proposed model
has achieved high accuracy. This analysis affirms that our
proposed BiLSTM-BPP can successfully predict the optimal
beam angle pair (AoD/AoA) for each vehicle position with
low error probability once the BiLSTM-BPP is sufficiently



trained. Moreover, the performance of our proposed approach
is validated in terms of evaluation regression metrics, as
presented below.

Fig. 5. Comparison between the predicted and actual values for beam pair
angle prediction.

Table II shows the results of the evaluation metrics com-
parison between our proposed BiLSTM-BPP model and other
regression models. We have performed five machine learning
algorithms, including Linear regression, SVR, KKN regressor,
Decision tree, and random forest, using the same training
parameters to check their performance for the beam pair
prediction approach. From the results obtained, it can be
observed that BiLSTM-BBP outperforms the results of the
other regression models and offers the best prediction perfor-
mance, achieving the smallest values of 0.11, 0.99, 0.0816,
0.0121,0.06 for RMSE, R Squared, MAE, MSE, MedAE,
respectively.

The above results conclude that the proposed BiLSTM-BPP
model performs better than the traditional machine learning
algorithms. The proposed solution can automatically identify
the strongest beam pair angle that connects the mmBS to the
vehicle for each vehicle position, maximizing the received
signal power in B5G vehicular networks. This enhancement
ensures efficient communication between mmBS and the mov-
ing vehicle for each position in a short search beam time,
compared to traditional beam searching methods that scan
360° beams to select the best beam angle to use in a highly
dynamic environment.

TABLE II
COMPARISON OF EVALUATION METRICS RMSE, R-SQUARED, MAE,

MSE, MEDAE FOR REGRESSION MODELS.

Models RMSE R-Squared MAE MSE MeAE
Linear regression 14.92 0.93 12.11 222.7 10.92
SVR 1.26 0.95 0.28 1.61 0.17
KNN regressor 0.44 0.97 0.19 0.59 0.14
Decision Tree 0.36 0.99 0.17 0.06 0.12
Random Forest 0.24 0.99 0.08 0.05 0.11
BiLSTM-BPP 0.11 0.99 0.0816 0.0121 0.06

V. CONCLUSION

This paper proposes a new deep learning-based beam pair
prediction model called BiLSTM-BPP to reduce the beam

search time in B5G vehicular networks. This proposal consists
of four BiLSTM layers, which enable the use of the past
and future channel information, followed by a fully connected
layer. Furthermore, the BiLSTM-BPP is proposed to predict
the optimal beam pair angle between the mmBS and vehicle
that aligns the beams reliably and continuously for each
vehicle position. After a set of simulations, we observe that
the calculated error probability obtained by our proposal is the
lowest compared to those obtained by the traditional machine
learning algorithms, namely, Linear regression, SVR, KNN,
decision tree, and random forest in terms of MSE, MAE,
MeAE, and RMSE. In future research directions, we will
investigate how to make our learning model take Non-line of
sight (NLOS) paths due to blockage caused by surrounding
obstacles and mobility.
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