
Parallelized Sequential Minimal Optimization for
Enhanced Support Vector Clustering Efficiency

DRID Abou Bakr Seddik
Computer science departement

Mohamed Khider university
LESIA Laboratory
Biskra, Algeria

drid.abs@univ-biskra.dz

Pr. Djeffal Abdelhamid
Computer science departement

Mohamed Khider university
LESIA Laboratory
Biskra, Algeria

abdelhamid.djeffal@univ-biskra.dz

Abstract—Support Vector Clustering (SVC) is a valuable tool
for unsupervised data analysis, but its computational demands
have limited its application to large datasets. In this study,
we propose a parallelized implementation of SVC based on
an adapted Sequential Minimal Optimization (SMO) algorithm.
Our approach aims to reduce training time while maintaining
clustering accuracy. Through a series of simulations on a sin-
gle computer, we demonstrate the significant efficiency gains
achieved through parallelization. Notably, we find that tuning
the kernel width parameter (q) can strike a balance between
execution time and clustering precision. These preliminary results
hold promise for the scalability of SVC, with opportunities for
further parameter optimization. This work contributes to the
field by offering an efficient and scalable SVC solution, opening
doors to its broader utilization across domains.

Index Terms—Clustering, Support vector clustering (SVC),
support vector machine (SVM), sequential minimal optimization
(SVM), Parallelization.

I. INTRODUCTION

Support Vector Clustering (SVC), is a relatively new kernel-
based algorithm, proposed in 2000 by Ben-Hur et al. [1],
mainly inspired by the Support Vector Machine (SVM) method
by Vapnik [2], it accurately groups data point into clusters
based on two main steps training and labeling. The SVC
training step uses the kernel trick to find and train a math-
ematics that form in the hyperspace a minimum hypersphere
that enclose most of the data points, then, by mapping back to
the input space, the obtained hypersphere generates the cluster
boundaries. Labeling step compute the adjacency matrix based
on the direct connection test between data points, then it labels
the whole data points in terms of the adjacency matrix [1]. Due
to its ability of generating complex cluster boundaries, and its
smoothness on dealing with outliers, also, the no necessity of
predefining the number of clusters, the SVC method outper-
forms clustering conventional methods. However, dealing with
large data sets shows a significant time consumption, both in
training and labeling step, and it presents great challenges.
In addition, the resulting clustering is very sensitive to the
selection of some parameters, which are basically done in a
supervised way.
Trying to solve these bottlenecks, many works have been
proposed in the literature with various optimization concepts.

In a comprehensive survey conducted by Li et al. [3], they
systematically summarized and categorized a significant body
of research conducted up until mid-2014. Upon analyzing
these works, it becomes evident that the majority of them,
owing to the algorithm’s inherent nature, heavily rely on
mathematical concepts, often overlooking straightforward op-
timization solutions, such as parallelization. In this study, we
aim to address this gap by proposing a parallelized version of
the SMO algorithm for the SVC method. Our primary goal
is to reduce the time cost associated with the training step.
We believe that by the parallelization this algorithm, we can
significantly enhance its efficiency and scalability.

II. A REVIEW OF SUPPORT VECTOR CLUSTERING

Based on Support Vector Machine (SVM) by Vapnik [2],
support vector domain description (SVDD) by Tax and Duin
[4] and Estimating the Support of a High-Dimensional Dis-
tribution by Bernhard Scholkopf [5], Ben-Hurr proposed a
robust mathematical kernel-based method called support vec-
tor clustering (SVC) [1]. The method task is to accurately
label a set of data points in an unsupervised way, throw two
main steps. Training step to construct a trained kernel radius
function, and the label step to assign a cluster index for each
data point. In this section, we present an overview of SVC
method principals.

Fig. 1: SVC main steps.

A. SVC training

Two major approaches are proposed in the literature to
define the domain of novelty in this step, the large margin



hyperplane (LMH) [5] and the minimum englobing sphere
(MES) [1], [4].

1) LMH: This approach tries to define the domain of
novelty by learning an optimal hyperplane that can separate
the data samples from the origin with the maximum distance.

2) MES: Is the mainly used technique in literature, it aims
to find a hypersphere in the hyperspace that can enclose all
data points with a minimal radius, then, by mapping back
to the input space, the obtained hypersphere generates the
cluster boundaries.
The quest of finding the optimal hyperplane (in LMH) or the
minimal hypersphere (in MES) equates to solving a Quadratic
Programming Problem (QPP).The QPP of the training step
can be solved by the Sequential Minimal Optimization (SMO)
algorithm of Platt [5] which was proposed as an efficient tool
for SVM training in the supervised case, and adapted to the
SVC problem by Scholkopf [5].
The result of solving this QPP serves as the decision function
within the SVC algorithm.

f(x) = K(x, x)− 2

N∑
i=1

βiK(xi, x) +

N∑
i=1

N∑
j=1

βiβjK(xi, xj)

(1)

B. SVC labeling (cluster assignment):

The obtained decision function 1 indicates only if the tested
data point is inside one of the clusters or not, it does not
differentiate between points that belong to different clusters
[1]. To do so, a simple graphical direct connection test can be
used to assign each sample to the appropriate cluster. For any
two points xi, xj , and using the function (3), we check the
m segmers on the line segment that connect their images in
the hyperspace, if all the m segmers lies in the hypersphere,
xi, xj should be labeled with the same cluster, otherwise, they
will be assigned to two different clusters.

III. MOST IMPORTANT CURRENT WORKS ON SVC

As it is mentioned in the introduction, the main drawback
of SVC method is the computational time requirement in both,
training and labeling step. Thus, almost of the theoretical
research works on the literature are focusing on minimizing
time consumption with the preservation -or even improvement
in some propositions- of the method’s accuracy.

H. Li et al. [3] have classified the theoretical contributions
into four main classes: data space reduction, solving dual
problem, improving cluster labeling methods and parameter
selection and optimization.

A. Data space reduction

Given that we are dealing with huge amount of data,
reducing it or selecting the most relevant data points shown
that it has a great effect on reducing computational time
requirement. According to [3], [4] only a few data points
are needed to define f(x), these points are the SVs. So, the
aim is to pinpoint these SVs and use only them to train
f(x). Many algorithms proposed to eliminate a large data

point proportion and use only the remaining small part –which
implicitly contains the SVs- to train the model.

Based on local geometrical and statistical information
method proposed Y. Li et al. [6], H. Li et al. [3] proposed
a border-edge pattern selection (BEPS) method to identify the
boundaries points. Their algorithm tries to localize points with
all of their neighbors or almost of them are locating on one
side (upside or downside) of the tangent plane passing throw
that points, depending on the curvature of the surface.

Applying BEPS result on a reduced data set, which sig-
nificantly reduce the amount of training time. However, the
necessity to set some parameters as: the thresh hold γ which
is used to control the curvature of the surface, and test if a
data point is a boundary point, and the number of neighbors
k, can affect the accuracy of the method.

Authors in [7], suggested another method to eliminate
unnecessary data, they proposed, as first step, to eliminate the
noise data points using the shared nearest neighbor (SNN)
algorithm, then identify and eliminate the core data points
using the unit vectors concept and only keep the boundary
points to use in the training step. However, this method
can’t effectively detect and eliminate all core points. In
addition, they need to define a thresh hold δ test the similarity
between data points, and a constant k for minimum number
of neighbors.

B. Solving dual problem

Although reducing data space can allow a great performance
improvement, finding an alternative problem to the original
dual problem attracted the main researchers’ attention due its
high computational complexity.

The first attempt to find an alternative problem to the SVC
dual problem was in [1], authors proposed to use the sequential
minimal optimization (SMO) algorithm. It decomposes the
original dual problem into a series of small-scale convex
quadratic programming problems. In each problem, only two
samples are required as the working set. Thus, in order to
obtain a globally optimal solution, the algorithm starts with
two heuristically selected factors β while the others are fixed
[3]. Despite the improvement that SMO guarantied, it still
requires a high time complexity.

In the aim to make SVC consume less, Y. Ping et al. [8]
proposed to use the dual coordinate descent method (DCD),
which was firstly proposed by C.-J. Hsieh et al. [9] to solve
large scale linear SVM. Firstly, they reformulated the original
dual problem to a linear one similar to SVM, however it still
an unsupervised model. Thus, they extended it to an iterative
algorithm to compute the βi coefficients. The resulting model
shows a flexibility when dealing with storage resources. It
offers two ways to compute and store kernel values, search
on demand or calculate on demand, depending on the used
platform capabilities. If the platform has sufficient storage re-
sources, one can calculate and store the whole kernel matrix in
the memory, then use the search on demand policy. Otherwise,
we compute only the needed block of the kernel matrix on



demand. This strategy can reduce the storage complexity of
the SVC and allow individuals to use their limited platform
resources to deal with large-scale data.

T. Pham et al. [10] applied the stochastic gradient descent
(SGD) to the LMH version of the SVC. Their SGD-LMSVC
algorithm iteratively train an optimal hyperplane. In each
iteration t, it uniformly samples a single data point from
the training data set to form a new hyperplane based on the
updated information from the previous one.

wt+1 = (1− 1

t
)wt +

C

t
I[wT

t ϕ(xnt )≤1]ϕ(xnt
)

Where IA is an indicator function, it returns 1 if A is true
and 0 otherwise. This kind of solution allows its use in a
dynamic mode and optimize memory usage. However, the use
of the kernels can lead to a considerable model growth, which
can slower the computation rate and cause a potential memory
overflow.

C. Improving cluster labeling

Cluster label assignment operation is based on pair-wise
testing and graph construction using the decision function
f(x), which shown a considerable time and storage complex-
ity. Thus, most of researches in the literature, who are dealing
with this step, are interested on how reducing data points used
in both, pair-wise tests and graph construction.

D. Parameter tuning

The aim of training f(x) step is to estimate the βi coef-
ficients. However, and as seen in the previous section, f(x)
results depends also on other parameters, such as: the kernel
width q, the penalty factor C and the sample rate m -which
has an influence on the labeling step-. Thus, many researches
in the literature are interested on tuning those parameters due
to their great influence on the clustering results. Following,
we will discuss the influence of every parameter, and some
important researchers work done about that parameter.

1) Kernel width q: The selected kernel function defines how
the data points will be mapped to the new hyperspace. As
well as, the most used one is the Gaussian kernel, the clusters
boundary shape depends on the selected q value. In addition,
and as we have seen previously, some of the boundary data
points known as SVs, are with direct responsibility of defining
the function f(x), thus, increasing or decreasing the number
of the SVs will obviously affect the cluster’s boundary shape.
Ben-Hur et al. [1] showed that the kernel width q is on direct
relation with the SVs. The authors proposed to begin with
small q value, equal to 1/maxi,j

∥∥xi − xj

∥∥2, which leads
to generate one cluster englobing all of the data points, then
incrementally increasing it into obtaining the desired cluster
split.

2) Penalty factor C (trade-off parameter): From the fact
that working on real data sets, and trying to divide them into
separated clusters is usually not allowed even with different q
values, Ben-Hur et al [1] confirmed the necessity of allowing

the Bounded Support Vectors (BSVs) for cluster separation.

3) Sample rate m: Another important parameter to tune,
the sample rate m. It does not affect the cluster shape as the
previous two parameters, but it has a great influence on the
labeling step. However, not a lot of interest in the literature
about this parameter.

IV. PROPOSED SOLUTION

The most common algorithm used to solve the Support
Vector Quadratic Programming Problem (QPP) is SMO, which
has a time complexity of O(l3). In our approach, we parallelize
SVC using an adapted version of Scholkopf’s SMO algorithm
[5] with the same complexity. Our solution involves parti-
tioning the data set into n sub-datasets, where n denotes the
number of utilized machines, allowing for independent training
of each sub-data set. This partitioning significantly reduces
the computational complexity of each portion to O((l/n)3).
Subsequently, the outcomes of these executions, which consti-
tute subgroups of support vectors representing approximately
10% of every trained sub-data set, are consolidated and treated
as a new data set. This new data set is then retrained on a
server machine, resulting in a complexity of O((l/10)3) for
the server. The overall complexity of our parallelized approach
is expressed as O((l/n)3) + O((l/10)3), which proves to be
substantially more efficient than the original O(l3) complexity.

Fig. 2: Fig Proposed solution diagram.

V. EXPERIMENTS

In this section, we present the results of our experiments
conducted to evaluate the performance of our parallelized
Support Vector Clustering (SVC) approach. These experiments
aim to provide insights into the impact of parallelization on
training efficiency. It’s important to clarify that the experiments
presented in this section were conducted through simulation
on a single computer. In this simulation setup, sub-datasets
were trained sequentially, and the highest execution time
was considered for comparison purposes. Since the kernel



function parameter, q, plays a pivotal role in shaping clusters
and notably influences the number of support vectors, our
preliminary results involve varying this parameter to enhance
the precision of the parallel version, as illustrated in Table I
The process of experiment step is as following:

• We used a data set with 3031 instances and 2 attributes,
• Set q to 0.0007 for the mono-post version,
• Penalty factor C to 1 (No outlier allowed),
• We trained the algorithm on the mono-post version and

we get the following results:
– Execution time: 670
– Number of SVs: 245

TABLE I: Preliminary experimental results.

Cli q SV cons SV mat Exec T SV acc Time rep
9 0.0007 189 141 38,37 58% 06%
9 0.001 214 165 32,37 67% 05%
9 0.002 233 188 137,14 77% 20%
9 0.003 236 192 272,85 78% 41%
9 0.004 239 202 397,58 82% 59%
9 0.005 235 206 275,76 84% 41%
9 0.006 243 213 304,48 87% 45%
9 0.007 240 213 315,04 87% 47%
9 0.008 245 218 360,53 89% 54%
9 0.009 241 217 492,58 89% 74%

Notes:
• Cli: represents the number of client machine,
• q: represents the kernel width,
• SV Cons: represents the number of support vectors in the

new consolidated data set,
• SV mat: represents the number of matched SVs to the

mono post results,
• Exec T: represent the highest execution time of a client

machine,
• SV acc: represent the accuracy in term of matching SVs

to the mono post results,
• Time rep: represent the time report to the execution time

of the mono post results,

A. Result discussion

As previously mentioned, the kernel width significantly
shapes the cluster structure and affects the number of support
vectors. Our results underscore the influence of varying this
parameter on the accuracy and time complexity of our pro-
posed solution. Notably, we observed that setting q = 0.008
led to a 50% reduction in execution time while maintaining
acceptable accuracy.

It’s essential to emphasize that these results are preliminary.
Other parameters remain available for fine-tuning to further
enhance the accuracy of our solution and achieve additional
time complexity gains. These parameters include:

• The penalty factor, C, to assess the influence of outliers
on our solution.

• The number of clients employed in our approach.
By optimizing these parameters, we anticipate further im-
provements in both accuracy and efficiency.

VI. CONCLUSION

In this study, we have presented a parallelized approach to
Support Vector Clustering (SVC) and conducted a series of
experiments to evaluate its performance. Our approach, based
on an adapted version of the Sequential Minimal Optimization
(SMO) algorithm, aims to reduce the time cost associated
with training while maintaining clustering accuracy. Through
simulation on a single computer, we demonstrated that par-
allelization significantly improves training efficiency, making
SVC applicable to larger datasets.

Our experiments also highlighted the importance of param-
eter tuning, particularly the kernel width (q), in achieving the
desired balance between execution time and accuracy. Notably,
a parameter setting of q = 0.008 led to a substantial reduction
in execution time while still delivering acceptable clustering
results.

While these preliminary results are promising, there is
room for further optimization and exploration of additional
parameters such as the penalty factor (C) and the number of
clients used. These factors may provide avenues for improving
the accuracy and efficiency of our solution.

In summary, our work contributes to the field of unsu-
pervised machine learning by introducing a parallelized SVC
approach and shedding light on the significance of parameter
tuning. We believe that our findings pave the way for more
efficient and scalable SVC implementations, with potential
applications in various domains. Future research can delve
deeper into parameter optimization and real-world deploy-
ment, building upon the foundations laid in this study.

REFERENCES

[1] Ben-Hur, Asa, et al. ”Support vector clustering.” Journal of machine
learning research 2.Dec (2001): 125-137.

[2] Cortes, Corinna, and Vladimir Vapnik. ”Support-vector networks.” Ma-
chine learning 20.3 (1995): 273-297.

[3] H. Li and Y. Ping, “Recent advances in support vector clustering: Theory
and applications,” Int. J. Pattern Recognit. Artif.

[4] D. M. J. Tax and R. P. W. Duin, “Support vector domain description,”
Pattern Recognit. Lett., vol. 20, no. 11–13, pp. 1191–1199,

[5] B. Sch, J. C. Platt, J. Shawe-taylor, A. J. Smola, and R. C. Williamson,
“Estimating the Support of a High-Dimensional

[6] Y. Li, S. Member, and L. Maguire, “Selecting Critical Patterns Based
on Local Geometrical and Statistical Information,” vol. 33, no. 6, pp.
1189–1201, 2011.

[7] Wang, Jeen-Shing, and Jen-Chieh Chiang. ”An Efficient Data Prepro-
cessing Procedure for Support Vector Clustering.” J. UCS 15.4 (2009):
705-721.

[8] Y. Ping, Y. F. Chang, Y. Zhou, Y. J. Tian, Y. X. Yang, and Z. Zhang, “Fast
and scalable support vector clustering for large-scale data analysis,”
Knowl. Inf. Syst., vol. 43, no. 2, pp. 281–310, 2015.

[9] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, S. Sundararajan, A
dual coordinate descent method for large-scale linear svm, in: Proceed-
ings of the 25th International Conference on Machine Learning (ICML
’08), ACM, 2008, pp. 408–415.

[10] T. Pham, H. Dang, T. Le, and H. Le, “Stochastic Gradient Descent
Support Vector Clustering,” pp. 88–93, 2015.


