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Abstract—The proliferation of Internet of Things (IoT) devices
has resulted in a deluge of data, significantly impacting the
performance of IoT services and networks. Among the critical
components of networking, packet routing plays a key role in
facilitating the transfer of data packets within interconnected
IoT networks. Traditionally, conventional proactive and reactive
routing protocols rely on neighbor information and control
messages to construct a comprehensive network view. They then
calculate optimal paths to reach their destinations. Once data
packets are delivered, any record of past routing decisions is
discarded, and only current information is considered when
determining new routes. In our ongoing research, we propose
the application of a deep Learning approach to harness the
knowledge gained from previously successful routing decisions.
This enables the creation of new decision models, which nodes
within the network can utilize to make intelligent routing choices.

Index Terms—Deep Learning, Internet of Things, Mobility,
Optimization, Routing.

I. INTRODUCTION

The Internet of Things (IoT) represents a paradigm shift in
the way we perceive and interact with the world around us. It
is a transformative vision where nearly every physical object,
from household items and vehicles to industrial machinery
and urban infrastructure, becomes digitally connected to the
internet. This interconnected web of ”things” generates a vast
ecosystem of smart devices that can collect, share, and analyze
data. These devices have the potential to enhance our daily
lives in countless ways, from optimizing energy consumption
in our homes to improving transportation systems, healthcare
delivery, and environmental monitoring. IoT holds the promise
of creating a more efficient, intelligent, and interconnected
world where data-driven insights and automation play a central
role in shaping our future.

The pervasive nature of IoT is reshaping industries across
the board. In agriculture, IoT sensors monitor soil conditions
and crop health, enabling precision farming and sustainable
practices. In healthcare, wearable devices and remote mon-
itoring systems provide real-time health data, empowering
individuals and transforming patient care. Manufacturing and
logistics benefit from IoT-driven supply chain optimization
and predictive maintenance. Smart cities leverage IoT for
traffic management, waste reduction, and enhanced public ser-
vices. Moreover, IoT’s influence extends to consumer goods,

enabling smart homes, connected vehicles, and personalized
shopping experiences. As IoT continues to evolve, its trans-
formative power is evident in nearly every facet of our
lives, ushering in an era of unprecedented connectivity and
innovation.

The proliferation of connected devices, driven by the Inter-
net of Things (IoT), has brought about a remarkable upsurge
in the amount of data being generated. This data explosion
is especially pronounced in the realm of smart cities, where
various sensors, cameras, and interconnected systems contin-
uously collect and transmit information. These data volumes
in smart cities tend to experience rapid growth as urban
areas adopt more IoT technologies for improving services,
infrastructure, and sustainability. However, it’s crucial to rec-
ognize that IoT devices, despite their instrumental role in data
collection, often operate under significant constraints. These
constraints encompass limitations in processing power, which
means they can’t perform complex computations as conven-
tional computers can. Additionally, IoT devices typically have
restricted memory capacities, restricting their ability to store
large datasets. Moreover, energy resources are finite for many
IoT devices, necessitating power-efficient strategies to prolong
device lifespans and minimize maintenance.

Given these inherent constraints, the development of ef-
ficient routing protocols is imperative. These protocols are
essential for ensuring that data is transmitted optimally within
IoT networks, taking into account the limitations of individual
devices. By doing so, we can maximize the utility of IoT
technologies while mitigating resource wastage and optimizing
the performance of smart city systems. This task of crafting
routing protocols tailored to the unique challenges of the IoT
ecosystem is increasingly vital as IoT adoption continues to
expand across various industries and applications.

In the current Mobile Ad Hoc Network (MANET) rout-
ing protocols, the process of establishing routes relies on
broadcasting control packets during the initial path discovery
phase and periodically sending HELLO packets during route
maintenance. However, these protocols lack the ability to take
into account the real-time routing context and past routing
experiences. Consequently, the protocol essentially repeats the
same procedures within the same context to achieve the same
outcome, without capitalizing on its prior routing decisions



or employing artificial intelligence techniques to enhance
performance. In summary, traditional routing protocols lack
intelligence; they lack awareness of the prevailing context and
do not consider previous routing choices made.

In the context of smart cities, people’s everyday movements
often follow a consistent pattern, characterized by repetitive
routines and actions. For instance, individuals may take the
same route to school on a daily basis. Many prior studies,
including references [1], [2], and [3], leverage this predictabil-
ity in mobility to address issues related to forecasting the
positions of nodes at various time intervals. Hence, we con-
cur that predictable movements among network components
are indeed prevalent, particularly within contemporary urban
environments.

Despite the typical predictability in the movements of
mobile nodes, previous research has not taken this factor into
account when choosing the next hop node. Consequently, our
proposed solution involves the utilization of a deep learning
method to harness the consistency exhibited by mobile com-
ponents in order to enhance the efficiency of routing protocols.

In the literature, various studies have employed deep learn-
ing methods to address routing problems, highlighting their
significant potential to enhance network performance.

In their work, as described in [4], the authors introduce an
intelligent network traffic control method to address a common
problem with conventional routing protocols. the problem is
that traditional routing protocols often fail to adapt and learn
from past experiences, especially regarding network anomalies
like congestion. To tackle this issue, the authors propose a
novel real-time traffic control approach based on deep learning.
This method utilizes deep Convolutional Neural Networks
(deep CNNs) with unique inputs and outputs designed to repre-
sent the Wireless Mesh Network (WMN) backbone effectively.

In the realm of Underwater Acoustic Sensor Networks
(UASNs), challenges such as long latency, high energy con-
sumption, and dynamic network topology have persisted. To
address these issues, the authors of this paper [5] introduce an
adaptive routing protocol named Deep Q-Network-based En-
ergy and Latency-Aware Routing (DQELR). DQELR employs
a Deep Q-Network algorithm that combines off-policy and on-
policy methods to make globally optimal routing decisions.

The remainder of this paper is structured as follows. Section
2 presents a brief description of the proposed solution. Section
3 presents the results and discussions. Finally, Section 4
presents the conclusion of this work.

II. PROPOSED SOLUTION

In our work, we aim to create a framework that allows
participant nodes in IoT networks to intelligently route data
packets. This involves reducing the need for nearby com-
munication with neighboring nodes during route discovery
and maintenance operations. To achieve this, nodes should
learn from their previous routing decisions while on the
move and transmitting data packets over time. We suggest
predicting the next hop for packet forwarding by leveraging
the regularity observed in the movement of mobile nodes.

Ultimately, our objective is to minimize the use of traditional
routing protocols in favor of deep learning techniques. We
outline our framework in three main phases, as shown in
Figure 1.

Fig. 1. The system model

Below, we will provide an explanation of the three phases.

A. Initial Step

In this phase, we save all information concerning a suc-
cessful routing decision of a data packet in a dataset, this is
happened at each node. Usually, the routing decisions rely
on a routing protocol, which is used to find the best path
that packets should traverse, starting from a source node,
and ending at the destination node. The routing protocols are
used at each node to decide the next hop the packet should
be forwarded to reach the final destination. Furthermore,
concerning mobile networks, mobile nodes change their zone
of existence at different moments. Therefore, the predictability
of nodes’ routing decisions is time-space and local context
varying.

From the routing protocols analysis, we based our propo-
sition on using the following information to be saved after a
successful routing decision:

• Actual node: represents the current node with the data
packet and seeks to forward it.

• Source node: represents the source node that initiates
transmitting the data packet. The source and actual nodes
are the same at the first transmission.

• Destination node: represents the final destination that the
source node wants to send its data packet.

• Actual neighbours: this is a piece of local-context infor-
mation. It represents all nodes that exist on the transmis-
sion range of the actual node.

• Time: presents the time, the day of the week, the day of
the month, and the month at which the successful routing
decision is made. Such information can represent the
regularity and periodicity of the routing decision made.
For example, a specific next hop is always chosen on
Saturday afternoon.

• Actual Position: represents the geographical position of
the current node when taking the routing decision.

• Next-hop: represents the routing decision to which the
actual node decided to send its data packet

After gathering a sufficient amount of data from each node,
a set of datasets is constructed as the outcome of this phase.



Fig. 2. Sample of our gathered dataset

B. Training step

The resulting datasets are used to construct decision models.
We seek to build a classifier for each of the participant network
nodes, that is used to recognize the suitable node, among
its neighbour nodes, that should be selected as a next-hop
node. Since nodes do not have enough resources, the gathered
datasets are sent to a dedicated server equipped with high
storage and computing capacities.

C. Running step

In this phase, every node relies on its built model instead of
the routing protocol to determine how to route data packets.
This model is essentially a function that takes into account
factors like time, node-specific data, and the characteristics of
the packet itself. It then uses this information to determine the
next hop or node where the data packet should be sent. If this
decision model is unable to correctly route the data packet
to its intended destination, the node must revert to using the
original routing protocol to attempt to resend the packet.

III. RESULTS AND DISCUSSION

In this section, we present the validation of our proposed
solution.

A. Initial Step

The initial step involves gathering data about successful
routing decisions made by each node in a dataset. To achieve
this, we established a network of nodes and selected a suitable
mobility model. We conducted simulations using the NS-
2 simulator along with the AODV routing protocol, during
which we recorded information related to successful routing
decisions over a period of time. This recorded data is cat-
egorized into four key features: Day, Current time, Current
node, Destination node, and the Nexthop category as shown in
Figure 2. Importantly, the number of categories in the dataset
matches the number of nodes in the network. Ultimately, we
amassed a dataset containing 16,384 samples collected from
all the nodes.

B. Training step

In the training process of our model, we employ a Recurrent
Neural Network (RNN) with a many-to-one architecture as
depicted in Figure 3. This specific RNN configuration plays
a pivotal role in our model’s functionality. It enables us to
process sequential data efficiently, with the ’many-to-one’
design signifying that it can handle input sequences of varying
lengths and produce a single output, making it particularly
suitable for tasks such as sequence classification or prediction.
This architecture ensures that our model can effectively learn

and capture patterns, dependencies, and temporal information
within the input data, allowing it to make accurate predictions
or classifications based on the learned context.

Fig. 3. RNN model using many to one architecture

Our proposed RNN model was implemented in python using
the numpy library

C. Evaluation
In order to evaluate the efficiency of our RNN model, we

will compare it with the AODV protocol in terms of the
total number of sent packets transmitting N DATA packets
from their sources to their destinations. The accuracy obtained
from our model is p= 0.72 %, which means that p × N data
messages will be correctly transmitted from their sources to
their destinations.

IV. CONCLUSION

In this paper, we introduced a deep learning approach aimed
at enhancing routing efficiency within mobile IoT networks.
Our primary emphasis was on networks with consistent and re-
current mobility patterns. Our novel protocol revolves around
the prediction of the next routing step without direct commu-
nication with neighboring nodes, leveraging the capabilities
of Recurrent Neural Networks (RNN). The protocol starts
by recording routing decisions within the network and sub-
sequently employs this historical data to construct predictive
models for determining next-hop destinations during future
routing tasks.

REFERENCES

[1] Y. Wang, N. J. Yuan, D. Lian, L. Xu, X. Xie, E. Chen, and Y. Rui,
“Regularity and conformity: Location prediction using heterogeneous
mobility data,” in Proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining, 2015, pp. 1275–
1284.

[2] H. Boukhedouma, A. Meziane, S. Hammoudi, and A. Benna, “On the
challenges of mobility prediction in smart cities,” The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, vol. 44, pp. 17–24, 2020.

[3] W. Su, S.-J. Lee, and M. Gerla, “Mobility prediction in wireless net-
works,” in MILCOM 2000 Proceedings. 21st Century Military Communi-
cations. Architectures and Technologies for Information Superiority (Cat.
No. 00CH37155), vol. 1. IEEE, 2000, pp. 491–495.

[4] F. Tang, B. Mao, Z. M. Fadlullah, N. Kato, O. Akashi, T. Inoue, and
K. Mizutani, “On removing routing protocol from future wireless net-
works: A real-time deep learning approach for intelligent traffic control,”
IEEE Wireless Communications, vol. 25, no. 1, pp. 154–160, 2017.

[5] Y. Su, R. Fan, X. Fu, and Z. Jin, “Dqelr: An adaptive deep q-network-
based energy-and latency-aware routing protocol design for underwater
acoustic sensor networks,” IEEE Access, vol. 7, pp. 9091–9104, 2019.


